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Abstract. Estimation of distribution algorithms (EDA) are similar to
genetic algorithms except that they replace crossover and mutation with
sampling from an estimated probability distribution. We develop a frame-
work for estimation of distribution algorithms based on the principle of
maximum entropy and the conservation of schema frequencies. An al-
gorithm of this type gives better performance than a standard genetic
algorithm (GA) on a number of standard test problems involving decep-
tion and epistasis (i.e. Trap and NK).

1 Introduction

Genetic algorithms maintain a population of potential solutions to a problem.
Each potential solution is assumed to have a fitness which is related to how well it
solves the problem. The population undergoes selection alternated with crossover
and/or mutation. Selection increases the frequency of high-fitness solutions and
decreases the frequency of low-fitness ones, but does not add new solutions to
the population. Crossover and mutation extend the sampling of the search space
by creating new solutions from those currently in the population.

Estimation-of-distribution algorithms take a different approach to sample the
search space. The population is used to estimate a probability distribution over
the search space that reflects what are considered to be important character-
istics of the population. A new population is then generated by sampling this
distribution. This introduces diversity into the new population as well as pre-
serving salient characteristics of the previous one. Thus, the sampling process
usually replaces the crossover and mutation operators of the genetic algorithm.
Estimation of distribution algorithms are reviewed in [1]. The MIMIC algorithm
of [2] uses only second-order statistics and the Kullback-Leibler divergence.

The maximum entropy principle [3] has its historical roots in physics and is
a widely used approach to estimating probability distributions from data. The
key idea is that the associated probability distribution should agree with what is
known but, apart from that, should express ‘maximum uncertainty’. This allows
the maximum possible freedom to adjust the distribution when new data become
known. In practice observed data is used to derive a set of constraints on the



estimated probability distribution. The entropy of this estimated distribution is
then maximized subject to these constraints.

We assume a length-` string representation, where the alphabet of symbols
at any string position is an arbitrary finite set. A schema is a subset of the
search space where the symbols at some string positions are defined (fixed) and
at other string positions are arbitrary (variable). A schema is commonly denoted
by a string of length ` where the special asterisk symbol ∗ is used to denote
that any string symbol is possible at that position. The order of a schema is the
number of defined (non-asterisk) positions. Given a frequency distribution over
the search space and a schema, the corresponding schema frequency is just the
sum of the relative frequencies of the elements of that schema.

One traditional way of “explaining” how genetic algorithms work is the build-
ing block hypothesis. This says that the GA builds high-fitness solutions by
combining building blocks which are high-fitness, short, low-order schemata that
can be thought of as representing partial solutions to the problem. This point of
view came from an analysis of Holland’s Schema Theorem [4] which, being an
inequality, did not take into account the effects of schema construction. More
recent exact schema theorems [5–7] have shown that, indeed, genetic algorithms
“work” by combining building blocks. However, the relevant building blocks are
dynamical, not static, of high “effective fitness” [5], not necessarily of high fit-
ness, and, in general, are not short [8]. Although the traditional building block
hypothesis is only a first order approximation, except under certain restricted
circumstances, exact schema theorems can be used to understand the role of
building blocks in a more rigorous way which does aid in our understanding of
how these algorithms work.

Our approach is to use schema frequencies in a given population (after se-
lection) to constrain the estimated probability distribution. The entropy of this
distribution is subsequently maximized and the distribution sampled to produce
a new population. The fitness of individuals in the new population is measured in
the normal way. Schema frequencies are used because they are the most natural
coarse-grained quantities associated with a population of strings. Since schema
frequencies are sums of string frequencies, they should give more reliable esti-
mates of properties of the fitness function than string frequencies. In addition,
since the state of the algorithm can be completely described by schema frequen-
cies, this should lead to tractable models of this class of algorithms.

On average, sampling from a maximum entropy distribution constrained by
low-order schema frequencies preserves these schema frequencies in the new pop-
ulation. Therefore, we suggest that our algorithm will work well in problems
where preservation of the building blocks corresponding the low-order schemata
used in the algorithm is important. One might also imagine an extension of the
algorithm so as to take into account the dynamical evolution of building blocks
by changing dynamically the schemata whose frequency will be fixed.

We can now give an outline of the proposed algorithm.

1. Generate an initial random population.
2. Generate an initial collection of schemata.
3. Apply selection (as in a GA) to the population.
4. Calculate the frequencies of the schemata in the schema collection.



5. Sample the maximum entropy distribution to obtain a new population.
6. Go to step 3.

Steps 2 will be elaborated in section 3. Naturally, one should expect the
performance of the algorithm to be sensitive to the schemata chosen in step 2.

2 Sampling from a maximum entropy distribution

constrained by schema family frequencies

In this section we give some basic definitions and then show how to sample the
maximum entropy distribution constrained by the frequencies of an appropriate
collection of schema families. We will use the term maxent distribution as
shorthand for maximum entropy distribution. The results given in this section
are proved in the appendix.

2.1 Entropy

If X is a finite set and p(x) is a probability distribution over X, then the entropy
of p is defined to be

S(X) =
∑

x∈X

−p(x) log(p(x))

where the base of the logarithm doesn’t matter as long as one is consistent. We
will assume base 2.

A schema constraint, (Q, a), on p(x) consists of a set Q ⊂ X and a real
number a ∈ [0, 1] such that

∑

x∈Q p(x) = a. A family of schema constraints

will be given by a pair (T , g), where T is a collection of schemata of X and g
is a function from T to the unit interval [0, 1]. Each schema constraint is of the
form (Q, g(Q)) for some Q ∈ T . The family (T , g) is feasible if there is some
probability distribution that satisfies all of the schema constraints. If for each
Q ∈ T , g(Q) is defined to be the frequency of Q in a given population, then T
is feasible.

Lemma 1. Equal probability rule. If p(x) is the maximum entropy distri-
bution on X subject to some schema constraints, and if x1 and x2 are indistin-
guishable with respect to these constraints (they are in the same schemata), then
these points have equal probabilities, i.e., p(x1) = p(x2).

Given a single schema constraint on X that requires the sum of the proba-
bilities of schema Q to be a, all points in Q will have the same probability a/|Q|
and all points in the complement will have probability (1−a)/(|X|−|Q|). Where
|Q| is the number of strings which match Q and |X| is the total size of the search
space X. The following rule extends this observation.

Theorem 1. Disjoint sets rule5 Given a collection of schema constraints
(T , g) such that the schemata of T are pairwise disjoint, the maxent distribution
p(x) subject to these constraints is given by:

5 This follows immediately from the equal probability rule.
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A schema family is the collection of schemata which share a common set of
defined positions. We will denote a schema family by a length-` string over the
alphabet {D,∗} where D denotes a position with a definite bit and ∗ denotes a
position with a variable bit. Thus, if the alphabets are binary, D∗D∗∗ denotes
the four schemata {0∗0∗∗, 0∗1∗∗, 1∗0∗∗, 1∗1∗∗}. Note that the schemata in
a schema family are pairwise disjoint and thus the disjoint sets rule applies when
all of the constraints are from a schema family.

We assume that the search space Ω can be written in the form:

Ω = A1 × · · · × A`

where each Ai is the finite alphabet of legal symbols at position i. Whenever we
write Ω as a Cartesian product, such as Ω = X × Y or Ω = X × Y × Z, we
will assume implicitly that each factor is a product of some of the Ai. In other
words, each factor corresponds to a set of string positions, and these sets form
a partition of the set of string positions.

If Ω = X × Y , let ΠX and ΠY denote the projections of Ω onto X and Y
respectively. If Q is a schema, then ΠX(Q) is the schema obtained by dropping
all string positions corresponding to Y . For example, if X corresponds to the
first three string positions and Y corresponds to the last three string positions,
then ΠX(1∗0∗01) = 1∗0. We will say that a schema or a schema family is
variable in Y if all positions corresponding to Y are variable. I.e. all ∗. Note
that if a schema Q is variable in Y , then Q = ΠX(Q) × Y .

Suppose that Ω = X × Y and that p(x, y) is the maxent distribution on Ω,
subject to a family of constraints (T , g), where each Q ∈ T is variable in Y .
Since ΠX(Q) × Y = Q, g can naturally be extended to the sets ΠX(Q) by
defining g(ΠX(Q)) = g(ΠX(Q) × Y ). It follows from the equal probability rule
(lemma 1) that p(x, y1) = p(x, y2) for any x ∈ X and y1, y2 ∈ Y . Thus, the max-
ent distribution on X subject to the constraints (ΠX(Q), g) is also the marginal
distribution p(x) of p(x, y). We will call this distribution the maxent distribution
on X subject to ΠX(T , g).

Theorem 2. Non-overlapping schemata rule. Let (TX ∪ TY , g) be a collec-
tion of schema constraints on X × Y such that each Q ∈ TX is variable in Y
and each Q ∈ TY is variable in X. Then the maximum entropy distribution on
X × Y is the independent product of the maximum entropy distribution p(x) on
X subject to ΠX(TX , g) and the maximum entropy distribution p(y) on Y subject
ΠY (TY , g). In other words, p(x, y) = p(x)p(y).

Example: Suppose that ` = 6, and X corresponds to the first 2 string posi-
tions, Y corresponds to the third string position, and Z corresponds to the last 3
string positions. Let E = DD∗∗∗∗, F = ∗∗D∗∗∗, G = ∗∗∗DDD. Suppose that
the frequencies of all of the schemata in these families are given by the function
g. We can first apply the non-overlapping schemata rule to schema families E and



F to get the maxent distribution p(x, y) on X × Y subject to ΠX×Y (E , g) and
ΠX×Y (F , g). Then we can apply the rule again to the decomposition (X×Y )×Z
to get the maxent distribution on X × Y × Z subject to all schema family con-
straints. For example, p(101101) = g(10∗∗∗∗)g(∗∗1∗∗∗)g(∗∗∗101).

Theorem 3. Overlapping schemata rule. Let (TX,Y ∪ TZ,Y ∪ TY , g) be a
collection of schema constraints on X × Y × Z such that TX,Y is variable in Z,
TZ,Y is variable in X, and TY is variable in X × Z. Let p(y) be the maxent
distribution on Y subject to ΠY (TY , g), p(x, y) be the maxent distribution on
X×Y subject to ΠX,Y (TX,Y , g), and p(y, z) be the maxent distribution on Y ×Z
subject to ΠY,Z(TY,Z , g). Assume that p(y) is the marginal distribution of p(x, y)
and of p(y, z). Then the maxent distribution on X × Y × Z is given by

p(x, y, z) =
p(x, y)p(y, z)

p(y)
(1)

Example: Let E = DDD∗∗∗, F = ∗DD∗∗∗, G = ∗DDD∗∗. Suppose g is
defined on all of the schemata of E and G. Since all together probabilities must
sum to 1 and since every schema in F is a disjoint union of schemata of E , g
is also implicitly defined on F . Similarly, g is implicitly defined on F from the
schemata of G. In order to apply the overlapping schemata rule, these implicit
definitions must agree. The overlapping schemata rule can be used to find the
maxent probability on the schema family DDDD∗∗ and hence on the whole
search space. For example, p(1001∗∗) = g(100∗∗∗)g(∗001∗∗)/g(∗00∗∗∗).

Now given constraints on the schema family H = ∗∗DDDD, we can apply
the overlapping schema rule again to incorporate these constraints assuming that
the constraints on ∗∗DD∗∗ defined implicitly from G agree with those from H.
(This would be the case as long as the constraints on G and H were derived
from the schema frequencies of the same previous population.) For example,
p(100101) = g(100∗∗∗)g(∗001∗∗)g(∗∗0101)/(g(∗00∗∗∗)g(∗∗01∗∗)).

Now suppose that the additional schema family was J = D∗∗DDD in-
stead of H. In order to apply the overlapping schemata rule, the constraints on
D∗∗D∗∗ defined implicitly from J would have to agree with the marginals of
the probability distribution on DDDD∗∗ derived above from E and G. There is
no reason to expect this to be the case even if all constraints were derived from
the schema frequencies of the same previous population. The probability dis-
tribution on DDDD∗∗ satisfies a conditional independence condition, whereas
there is no reason to expect that the constraints on D∗∗D∗∗ derived from J and
the schema frequencies of the previous population would satisfy this conditional
independence condition.

3 Algorithms

In this section we give two algorithms based on maxent sampling.



3.1 The order-1 schemata algorithm

This algorithm follows the general framework given in section 1 with the ini-
tial collection of schemata in step 2 being all order-1 schemata. Sampling from
the maxent distribution is done using the non-overlapping schemata rule (theo-
rem 3). It is not hard to see that this is just the UMDA (uniform multivariate
distribution algorithm) of [9, 10].

The UMDA algorithm is a simple estimation of distribution algorithm that
preserves the frequencies corresponding of each variable independently of other
variables. It works well [11] for problems without significant interactions between
variables, but partial solutions of order more than one are disrupted and thus
the algorithm may have difficulty solving problems where the fitness function
has significant interactions between variables.

3.2 The order-2 contiguous schemata algorithm

A schema family is contiguous if the defined positions are sequential with no
intervening variable positions. As a preliminary test of the idea of applying the
idea of maximum entropy to estimation of distribution algorithms, we have the
following algorithm that works with contiguous order-2 schemata. Since only
contiguous schemata are used, one may expect that it will work best when in-
teractions between variables tend to be between variables that are located close
to each other on the string. The order of string positions could be rearranged to
achieve this property using the techniques of [12] or [2], but we did not test this
approach in this paper.

The order-2 contiguous algorithm follows the framework of section 1 with
the collection of schemata in step 2 being all order-2 contiguous schemata. (The
schemata may overlap.) The selection can be any selection method used in a
GA. We have tested binary tournament and truncation selection—see section 4.

Sampling from the maxent distribution in step 5 of the algorithm is done
by repeatedly applying the overlapping schemata rule (theorem 3). To create a
new individual that is to be added to the new population, we initially start with
the all ∗ schema. This is progressively refined, (using the overlapping schemata
rule) with more and more bits being defined, until there are no ∗ left. When all
positions are fixed the corresponding individual is added to the new population.

The first two positions are fixed by choosing a schema randomly from
DD∗ . . .∗ using the schema frequencies as probabilities. The third position is
fixed using the overlapping schemata rule using the schema family ∗DD∗ . . .∗.
The fourth position is chosen using the schema family ∗∗DD∗ . . .∗, etc. (This
will take ` − 1 steps.)

For example, let us do this for ` = 4. The new individual is initially repre-
sented by the schema ∗∗∗∗. A schema is chosen from the family DD∗∗ according
to the probabilities g(00∗∗), g(01∗∗), g(10∗∗), g(11∗∗). Suppose that 01∗∗ is
chosen. The new individual schema is now 01∗∗. A schema is then chosen from
∗DD∗. However, this must be a compatible schema, so one of ∗10∗ or ∗11∗ is
chosen. (Two schemata are compatible if they agree wherever their defined posi-
tions overlap.) These two schemata are chosen using probability g(∗10∗)/g(∗1∗∗)



for ∗10∗ and probability g(∗11∗)/g(∗1∗∗) for ∗11∗. Note that these probabilities
add to 1. If ∗10∗ is chosen, the new individual schema is then 010∗. One of the
schemata ∗∗00 and ∗∗01 is then chosen in the same way.

One might ask why we are using order-2 schemata and not higher order
schemata. Note that there is a chaining effect associated with the requirement
that compatible schemata must be chosen on consecutive choices. For example,
if both the schema 0000∗∗ and 1111∗∗ have high frequency, then our procedure
is likely to choose either a sequence of zeros or a sequence of ones. In addition,
using higher-order schemata can be a topic for further research.

If the frequency of an order-2 schema is zero in the population after the
selection step, then it will be zero after step 5 as well. Thus, for the algorithm
as described so far, such a schema will have zero frequency from this point on.
This implies that the algorithm will eventually converge to a single individual.
As this behavior may be undesirable we have added a mutation procedure to
the algorithm. This is done by modifying the sampling procedure of step 5 as
described above. The procedure is parameterized by a mutation rate. When a
schema is chosen from an order-2 schema family, with a probability equal to
the mutation rate, the schema frequencies are ignored and the schema is chosen
from the set of compatible schemata using equal probabilities. A schema might be
chosen which results in no compatible choices when processing the next schema
family. In this case, the mutation procedure is forced when processing the next
schema family. Note that, if mutation is applied, we are not sampling from the
exact maxent distribution.

4 Empirical results

The order-2 contiguous schemata algorithm for a binary alphabet was imple-
mented in Java by Pularvarty and Wright. Individuals of populations were imple-
mented as Java BitSets and schemata were represented as a pair of BitSets. For a
schema, one BitSet represented the defined positions and the second represented
the definitions of those defined positions. Then set operations (as implemented
by computer bitwise operations) could be used to determine if an individual
was an element of a schema. For example, if an individual is represented by the
set A, the defined positions of schema Q by D, and the definitions by E, then
the individual is in schema Q iff D ∩ A = E.

For the order-2 contiguous algorithm we would expect that the algorithm
would do well when there are building blocks that match the algorithm. The first
class of test functions used was the concatenated trap function. Concatenated
trap functions were designed with the building block hypothesis in mind [13, 14].

A concatenated trap function of order k is a sum of trap subfunctions of
order k. A trap function t of order k is defined by

tk(x) =

{

|x| if |x| 6= 0

k + 1 if |x| = 0

where |x| is the number of ones in the binary string x. We used k = 3 and
k = 4. The concatenated trap function is defined by dividing the string into



Trap-3 Function

0

200000

400000

600000

800000

1000000

60 120 180 240 300

String Length

F
u

n
c.

 E
va

lu
at

io
n

s

GA

MaxE
nt

Trap-4 Function

0

500000

1000000

1500000

2000000

60 120 180 240 300
String Length

F
u

n
c.

 E
va

lu
at

io
n

s

GA

MaxEnt

Fig. 1. On Trap benchmarks the GA scales much worse than maxent (order-2).

non-overlapping contiguous blocks of length k, and then defining an order-k
trap function on each of these blocks. The value of the function is the sum of
the trap functions.

Note that the optimum string is the all-zeros string, and that there are nat-
ural building blocks, namely the schemata with zeros for one block and all other
positions variable. Since the building blocks are contiguous schemata, the struc-
ture of the problem matches the algorithm.

We compared the contiguous order-2 algorithm of this paper with a con-
ventional genetic algorithm. For the experiments on the trap function and for
both algorithms we used a mutation rate of 0.01, and truncation selection with a
truncation parameter of 0.2. In other words, the best 1/5 of individuals are kept
in the selection phase. The GA is sensitive to population size, and an attempt
was made to choose a reasonably appropriate population for the GA. A popula-
tion size of 5000 was used for the maximum entropy algorithm and for the GA,
except when k = 4 and the string length was 240 or 300. In these two cases,
population sizes of 10000 and 20000 were used. The genetic algorithm used one-
point crossover with crossover rate 0.9. Algorithms were run until the optimum
string was found. Figure 1 shows the average (over 20 runs) of number of fitness
evaluations until the optimum was found. As the string length increases, the
algorithm of this paper does much better than the one-point crossover GA.

The second class of fitness functions used are the NK-fitness functions [15].
These functions are also sums of simpler subfunctions. In this case, the simpler
subfunctions are real-valued functions that depend on K +1 bits. Each subfunc-
tion is defined by a table mapping bit strings of length K + 1 to real numbers,
and the real numbers are chosen randomly using a uniform distribution from the
interval [0, 1]. There are two versions of NK-fitness functions. For the adjacent
version, the string is divided into ` overlapping contiguous blocks of order-K +1
each, and the function is a sum of random subfunctions defined on each of these
blocks. For the random version, the string is divided into ` overlapping non-
contiguous blocks of K + 1 bits each. The ith block is guaranteed to contain bit
i. The positions of the remaining bits are chosen randomly. We used K = 3 so
that the blocks contained 4 bits each.

For a given string length and K, there are many NK fitness functions de-
pending on the choice of the random numbers defining the subfunctions, and
in the case of the random version, on the choice of the bits that make up the
block. The results given in Figure 2 are for string length 64, mutation rate 0.01,
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Fig. 2. Performance of GA v. maxent (order-2) for NK (N=64, K=3). Maxent is sig-
nificantly better on both types of NK landscape.

truncation selection with truncation parameter 0.2, and 5000 fitness evaluations.
Each result is the average of 1000 runs.

The following procedure was used to statistically test whether the maxent
algorithm was better than the GA. For each of 1000 trials, an NK fitness func-
tion was generated and then the GA and the Maxent algorithm were run with
population sizes of 50, 100, 200. and 300. The fitness of the best individual over
the 4 maxent runs was compared with the fitness of the best individual over
the 4 GA runs. For NK-adjacent, the Maxent algorithm had better fitness 792
times, the GA had better fitness 198 times, and there was equal fitness 10 times.
For NK-random, the Maxent algorithm had better fitness 646 times, the GA
had better fitness 350 times, and there was equal fitness 4 times. Clearly these
results are statistically significant.

5 Conclusion

A major advantage of the approach of this paper is the potential for modeling
algorithms based on maximum entropy. The sampling step of the algorithm
framework (step 5) depends only on the frequencies of the schemata in the
schema collection (and on the outcome of random number generation). Thus,
a model of the algorithm can be based on these frequencies rather than the
frequencies of all strings. This means that the model is naturally coarse-grained.

This can be illustrated by existing models of algorithms based on gene pool
recombination and linkage equilibrium, such as the UMDA algorithm. One anal-
ysis of the UMDA, based on quantitative genetics, appears in [11]. Fixed point
analysis is used to explore the phenomenon of bistability in the UMDA with
mutation in [16]. Both of these analyses use the fact that the population is in
linkage equilibrium after gene pool recombination. When order-1 schema fami-
lies are used, step 5 of our algorithm framework is gene pool recombination, and
in this case, linkage equilibrium is equivalent to maximum entropy. In our algo-
rithm that uses contiguous order-2 schema families, the state of the population
is reduced to the frequencies of the schemata in these families, and a model of
the algorithm can be based on keeping track only of these frequencies.



In conclusion, we have presented a novel paradigm based on maximum en-
tropy for constructing estimation of distribution algorithms. Preliminary experi-
ments with an algorithm based on this idea using order-2 schemata on deceptive
trap functions (Figure 1) and NK landscapes (Figure 2) are promising. Further
work on using higher order schemata should be done.
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Appendix

In this section we give justification for the equal probability rule, the non-
overlapping schemata rule, and the overlapping schemata rule.
Proof of the equal probability rule: Suppose that there are points x1, x2 ∈ A
such that p(x1) 6= p(x2). Define the probability distribution q by q(x1) = q(x2) =
(p(x1) + p(x2))/2 and q(x) = p(x) for all x /∈ {x1, x2}. Clearly, q satisfies all of
the schema constraints. Since −p log p is a concave function of p, the entropy of
q is greater than the entropy of p, contradicting the fact that p is the maximum
entropy distribution. ut

Following [17] can define the conditional entropy of a probability distri-
bution p(x, y) over X × Y by

S(X|Y ) =
∑

Y

p(y)S(X|y) = −
∑

Y

∑

X

p(x, y) log p(x|y)

The following is lemma 4 of chapter 2 of [17].

Lemma 2. S(X|Y ) ≤ S(X) with equality iff X and Y are probabilistically in-
dependent, i. e., if p(x, y) = p(x)p(y).

The following is taken from equation (5) of [18] and Lemma 3 of chapter 2
of [17].

Lemma 3. S(X,Y ) = S(X|Y ) + S(Y ) ≤ S(X) + S(Y ), with equality if and
only if X and Y are probabilistically independent.

Proof of the non-overlapping schemata rule: We prove the rule for schema
families E and F which correspond to the product decomposition X × Y . The
more general case follows by induction from this case.

Lemma 3 shows that S(X,Y ) ≤ S(X) + S(Y ) with equality iff p(x, y) =
p(x)p(y). It is sufficient to show that if p(x, y) is defined to be p(x)p(y), then
p(x, y) satisfies all of the schema constraints.

Let Q ∈ TX . Then
∑

(x,y)∈Q

p(x, y) =
∑

(x,y)∈Π
−1

X
(ΠX(Q))

p(x)p(y)

=
∑

x∈ΠX(Q)

p(x)
∑

y∈Y

p(y)

= g(ΠX(Q)) · 1 = g(Q)

The proof for Q ∈ TY is similar. ut



Lemma 4. S(X,Z|Y ) = S(X|Y,Z) + S(Z|Y )

Proof.

S(X|Y, Z) = −
X

X

X

Y

X

Z

p(x, y, z) log p(x|y, z)

= −
X

Y

p(y)
X

X

X

Z

p(x, z|y) log p(x|y, z)

= −
X

Y

p(y)
X

X

X

Z

p(x, z|y) log
p(x, z|y)

p(z|y)
since p(x|y, z) =

p(x, z|y)

p(z|y)

= −
X

Y

p(y)
X

X

X

Z

p(x, z|y)
`

log p(x, z|y) − log p(z|y)
´

= −
X

Y

p(y)
X

X

X

Z

p(x, z|y) log p(x, z|y) +
X

Y

p(y)
X

X

X

Z

p(x, z|y) log p(z|y)

= −
X

Y

p(y)
X

X

X

Z

p(x, z|y) log(p(x, z|y) +
X

Z

X

Y

p(y, z) log p(z|y)

= S(X, Z|Y ) − S(Z|Y )

The following lemma is a special case of lemma 6 of chapter 2 of [17].

Lemma 5. S(X|Y,Z) ≤ S(X|Y ) with equality iff

p(x, z|y) = p(x|y)p(z|y),

or equivalently, if
p(x, z|y) = p(x)p(z)/p(y).

Proof of the overlapping schemata rule: In view of lemmas 4 and 5, it is
sufficient to show that if p(x, y, z) is defined by p(x, y, z) = p(x, y)p(y, z)/p(y),
then all of the constraints are satisfied.

First, let Q ∈ TX,Y . Recall that Q = ΠX×Y (Q) × Z. Then

X

(x,y,z)∈Q

p(x, y)p(y, z)

p(y)
=

X

(x,y)∈ΠX×Y (Q)

p(x, y)

p(y)

X

z∈Z

p(z, y)

=
X

(x,y)∈ΠX×Y (Q)

p(x, y)

p(y)
p(y) since p(y) is the marginal of p(y, z)

=
X

(x,y)∈ΠX×Y (Q)

p(x, y) = g(Q)

The cases when Q ∈ TZ,Y and Q ∈ TY are similar. ut


