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Abstract

This paper addresses the problem of discovering the structure of a fit-
ness function from binary strings to the reals under the assumption of
bounded epistasis. Two loci (string positions) are epistatically linked if
the effect of changing the allele (value) at one locus depends on the allele
at the other locus. Similarly, a group of loci are epistatically linked if the
effect of changing the allele at one locus depends on the alleles at all other
loci of the group. Under the assumption that the size of such groups of
loci are bounded, and assuming that the function is given only as a “black
box function”, this paper presents and analyzes a randomized algorithm
that finds the complete epistatic structure of the function in the form of the
Walsh coefficients of the function.

1 Introduction

Function optimization algorithms can be viewed as a search through a domain
space of the function for a value that yields a maximum value in the range
space of the function. In a computer, the search is dictated by the represen-
tation of the domain and the search operators on that representation. In this
paper, we assume a domain of fixed-length binary strings. In this domain,
search often proceeds by modifying the bits of previously evaluated points in
the search space. Understanding how the bits in the representation interact
with each other in defining the value of the function is critical to understand-
ing the function to be optimized. This interaction is called epistatic linkage or
epistasis 1

This paper addresses the problem of determining the epistatic linkage of a
function from binary strings to the reals. There is a close relationship between
the Walsh coefficients of the function and “probes” (or perturbations) of the
function. This relationship leads to two linkage detection algorithms that gen-
eralize earlier algorithms of the same type. A rigorous complexity analysis is
given of the first algorithm. The second algorithm not only detects the epistatic
linkage, but also computes all of the Walsh coefficients. This algorithm is much
more efficient than previous algorithms for the same purpose.

1For this paper we do not draw a distinction between epistasis and linkage.
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2 Background

In very simple fitness functions each bit in the domain independently con-
tributes to the total value of the function. In optimizing these simple fitness
functions, each bit can be tested independently against a fixed background of
other bits to determine the contribution of that bit. Proceeding through all the
bits the optimum can be found in linear time with respect to the number of bits.

Most practical functions are not nearly as simple. For many, the contribu-
tion of a bit in the domain to the value of the function is non-linear in that it is
dependent on the state of one or more other bits in the domain. This linkage
effect is called epistasis and can be succinctly defined:

“...if the effect of one unit is not predictable unless the value
of another unit is known, then the effects are epistatic. . . in other
words, the effect of a unit is context dependent” (Brodie, 2000).

Applied to the case of evolutionary computation, the “units” in the quote above
refers to the positions in the problem representation whose values are selected
from an alphabet. The more units, or positions, that simultaneously interact
(the higher the epistasis) the greater the degree of freedom to “hide” the opti-
mum anywhere in the subdomain formed by the interacting units (Heckendorn
and Whitley, 1999). Sets of units that epistatically interact are called epistatic
blocks. For example consider the function f defined over three bits b2b1b0 de-
fined as f(b2b1b0) = b2 ∗ b1 + b0. The value of b2’s contribution to the function
is unaffected by the value of b0 however, b2’s contribution is dependent on the
value of b1. Therefore, {b2, b1} forms one epistatic block and b0 forms a second
epistatic block. These blocks are separable because they do not share any bits
and form subproblems which can be solved separately much like the previous
independent bit example. Now consider function g(b2b1b0) = b2 ∗ b1 + b1 ∗ b0.
This time we have two epistatic blocks each of two bit positions, but the blocks
overlap. Even with this overlap, the value of b2’s contribution to the function
is unaffected by the value of b0 and so there is no epistasis between b0 and b2.
Overlapping blocks form an overlying constraint satisfaction problem, but not
a fundamental problem of epistasis. The two aspects of a problem: epistasis
and pattern of overlapping epistatic blocks, define the structure of a problem.

A large number of bits of epistasis is no guarantee of a difficult problem.
Nor is low epistasis a guarantee of an easy problem. In fact, 3-MAXSAT prob-
lems are examples of problems of low epistasis in which all epistatic inter-
actions are known and they are provably NP-complete (Papadimitriou, 1994;
Heckendorn, 1999). This means that even if one is given the complete epistatic
structure of a function for free a problem may be intractable. Still, knowing
the location of epistatically interacting blocks of bits may be used to guide a
search for the optimum or the formulation of a representation (Munetomo and
Goldberg, 1999b; Munetomo and Goldberg, 1999a; Kargupta and Park, 2001).

If the function is separable, each component can be solved separately. If
the function is close to separable, this can guide the choice of crossover opera-
tors. In this case, Mühlenbein and Mahnig (Mühlenbein and Mahnig, 1999)
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also suggest applying the UMDA algorithm where each component makes
up a string position with a higher-order alphabet. Mühlenbein, Mahnig, and
Rodriguez (Mühlenbein et al., 1999) give a factorized distribution algorithm
(FDA) that applies to additively decomposed functions (that we call embedded
landscapes in this paper). This is an example of an estimation-of-distribution
algorithm, and the information produced by the algorithms of this paper should
be very useful in this type of algorithm.

This paper uses the assumption that the order of epistatic interaction be-
tween loci is bounded. In the terminology of this paper, the fitness function is
assumed to have k-bounded epistasis. This is equivalent to an assumption that
the Walsh coefficients of order greater than k of the fitness function are zero.
This assumption is satisfied by some important classes of real-world fitness
functions and some commonly used classes of test functions. These include
the k-deceptive functions of (Goldberg et al., 1993), the NK-fitness landscape
(Kauffman, 1993), the k-CNF MAXSAT problems (Hogg et al., 1996; Rana et al.,
1998), and constraint-satisfaction problems (Braunstein et al., 2003).

The general problem of discovering epistatic linkage has been addressed
directly and indirectly by many papers. Munetomo and Goldberg showed a
simple direct perturbational approach to generalized linkage discovery over a
binary alphabet in (Munetomo and Goldberg, 1999b) (Munetomo and Gold-
berg, 1999a). This basic approach has been extended in (Munetomo, 2002b)
and (Munetomo, 2002a). These papers also summarize some other approaches
to the problem, and further references are given in Section 10.1. Kargupta et
al. (Kargupta and Park, 2001) have shown that for epistatically bounded func-
tions, f , where the epistasis is known to be bounded by k bits, all the Walsh
coefficients, a direct measure of the magnitude of epistasis, can be computed
in time O(Lk), where L is the length of the representation.

In this paper we present a theoretical framework for the detection of epistatic
linkage and the computation of Walsh coefficients for epistatically bounded
functions. The Walsh coefficients completely describe the function and so com-
pletely characterize the epistatic linkage. The algorithms we present in this pa-
per are black box algorithms in that they assume minimal prior knowledge of
the function being analyzed. This paper deals with perturbation methods, or
what we call probes. We give a randomized algorithm for linkage detection
which is based on our theoretical framework, and we give rigorous complexity
bounds for this algorithm. We extend this to another randomized algorithm
that both detects linkage and computes the Walsh coefficients. The algorithm
is analyzed under the assumption that the subfunctions of the function are of
maximum order k, the support for the subfunctions is chosen randomly, and
the number of subfunctions grows linearly with the string length.

3 Our Notation

The space of all bit strings of length L is denoted by B. The binary opera-
tors on B include ∧ which denotes bitwise AND, and ⊕ which denotes bitwise
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EXCLUSIVE-OR. An overbar (e. g. m) denotes 1’s complement. A string of all
ones is denoted ~1. Since the L-bit binary representations of the integers in the
interval [0, 2L) coincide with the elements of B, a bit string may be denoted by
the corresponding integer. For example, the integer 2k, 0 ≤ k < L corresponds
to the bit string with a single one in position k, where bit positions are labeled
from the right starting at 0. Thus, 22 ≡ 0000100 for L = 7. It is convenient to
think of a bit string i as corresponding to the set of bit positions indicated by the
1 bits in i. Thus, we write i ⊆ j (i is contained in j) when the set correspond-
ing to i is contained in the set corresponding to j, i. e., when i ∧ j = i. If i ⊆ j
and i 6= j we write i ⊂ j. The unitation or bit count function bc(i) of string i is
the number of ones in i. Given a mask m ∈ B, let the set Bm = {i ∈ B : i ⊆ m}.
Note |Bm| = 2bc(m). Brackets are used to denote an indicator function: if expr
is an expression that may be true or false, then

[expr] =

{

1 if expr is true
0 otherwise

4 Walsh Analysis and Embedded Landscapes

Walsh analysis provides a powerful way of looking at the interaction between
bits (Heckendorn and Whitley, 1999). In this section we introduce some of the
major ideas in Walsh Analysis that we will be using.

Any function f : B→R can be written as a linear combination of Walsh
functions:

f(x) =
∑

i∈B

wiψi(x)

where the ith Walsh function is defined as:

ψi(x) = (−1)bc(i∧x)

and the wi are referred to as Walsh coefficients. The Walsh transform is a
linear transform of the Walsh coefficients represented as a vectorw in R2L

to the
function space f in R2L

. This is a change of basis transformation corresponding
to the matrix Ψ with Ψi,j = ψi(j).

f = Ψw and w =
1

2L
Ψf (1)

It is not hard to show that Ψ is symmetric and ΨΨ = 2LI where I is the identity
matrix.

f depends on a bit position k, 0 ≤ k < L, if there exists a j ∈ B such that
f(j) 6= f(j ⊕ 2k). In other words, f depends on bit position k if flipping bit
k changes the value assigned to some string j. The support of f is the set of
loci that f depends on. The support mask of f is a bitstring in B with 1 bits in
exactly and only those positions that support f . By the definition the support
mask of ψi is i.
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An embedded landscape is a function f : B→R which can be written in the
form f =

∑

gj where each subfunction gj has a support mask mj . Normally,
there will be some restriction on the support set masks mj . The function f :
B→R has k-bounded epistasis if it can be written as the sum of subfunctions
each of whose support is a set of at most k bits. It has been shown, perhaps
most recently in (Heckendorn, 2002):

Theorem 1 (K-bounded Landscape Theorem) A function f : B→R has k-bounded
epistasis if and only if wj = 0 ∀ bc(j) > k

Thus, f has k-bounded epistasis if and only if all of its Walsh coefficients
of order greater than k are zero. The function f is linear if it has 1-bounded
epistasis. The function f is additively separable if it can be written as a sum of
at least two subfunctions where the supports of all subfunctions are pairwise
disjoint.

5 Probes

A probe is a way of determining epistatic properties of a function f : B→R
by performing a series of specific function evaluations. For example, in order
to determine if the first and third bits of the domain of a 16 bit function are
epistatically interacting, the function can be evaluated at these four points:

f(1x1xxxxxxxxxxxxx)

f(1x0xxxxxxxxxxxxx)

f(0x1xxxxxxxxxxxxx)

f(0x0xxxxxxxxxxxxx)

The x’s represent a constant background bit pattern that does not vary from
evaluation to evaluation. If the difference between the first two functions eval-
uations is different from the difference between the second two function eval-
uations then we know the bits are interacting. This process of probing function
values can be formalized and generalized in the concept of a probe.

More specifically, a probe is:

P (f,m, c) =
1

2bc(m)

∑

i∈Bm

(−1)bc(i)f(i⊕ c)

where m ∈ B and c ∈ Bm. m is a bit mask that identifies the bits to be tested
for epistatic interaction and c is the static background of bits for the probe.
The order of the probe is number of ones in the mask, or bc(m). The direct
computation of the value of a probe requires 2bc(m) function evaluations. The
constant 1

2bc(m) may be ignored for some purposes, but is required if Walsh
coefficients are to be calculated.
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Theorem 2 (Walsh Function Probing)
For any j,m ∈ B and c ∈ Bm,

P (ψj ,m, c) =

{

ψj(c) if m ⊆ j
0 otherwise

Proof:

P (ψj ,m, c) =
1

2bc(m)

∑

i∈Bm

(−1)bc(i)ψj(i⊕ c)

=
1

2bc(m)

∑

i∈Bm

ψ~1(i)ψj(i⊕ c)

=
1

2bc(m)

∑

i∈Bm

ψ~1(i)ψj(i)ψj(c)

=
1

2bc(m)
ψj(c)

∑

i∈Bm

ψj(i)

By the Balanced Sum Theorem for Hyperplanes (Heckendorn and Whitley,
1999) the sum is 2bc(m) if j ⊆ m which is the same as m ⊆ j and is 0 other-
wise.

2

A probe is really probing for nonzero Walsh coefficients by adding and sub-
tracting over a set of Walsh coefficients. If the result is nonzero then one of the
component Walsh coefficients is nonzero. If it is zero then we can say very little
without further information. The following theorem identifies the set of Walsh
coefficients.

Theorem 3 (Probe Subset)
For any m ∈ B and c ∈ Bm,

P (f,m, c) =
∑

j∈B

[m ⊆ j]wjψj(c)

where wj is the jth Walsh coefficient of f .

Proof:

6



f =
∑

j∈B

wjψj

P (f,m, c) = P (
∑

j∈B

wjψj ,m, c)

=
∑

j∈B

wjP (ψj ,m, c) since P (f,m, c) is a linear transformation of f

=
∑

j∈B

[m ⊆ j]wjψj(c) by the Walsh Function Probing Theorem

2

A maximal nonzero Walsh coefficient is a Walsh coefficient wm such that
wm 6= 0 and wj = 0 ∀ j ⊃ m.

Corollary 4 (Maximal Probe)
If wm is a maximal nonzero Walsh coefficient, then for any c ∈ Bm,

P (f,m, c) = wm

Proof: It follows from Theorem 3 that

P (f,m, c) = wmψm(c)

And from the definition of a Walsh function: ψm(c) = (−1)bc(m∧c) = (−1)0 = 1.
2

A probe can be written as a sum of lower-order probes.

Theorem 5 (Probe Recursion)
For any function f : B → R, any masks m,n ∈ B with n ⊆ m, and any c ∈ Bm :

P (f,m, c) =
1

2bc(n)

∑

i∈Bn

(−1)bc(i)P (f,m⊕ n, i⊕ c)

Proof: Any j ∈ Bm can be written uniquely as j = i⊕ u where i ∈ Bn and
u ∈ Bm⊕n. Thus:

P (f,m, c) =
1

2bc(m)

∑

j∈Bm

(−1)bc(j)f(j ⊕ c)

=
1

2bc(n)

∑

i∈Bn

(−1)bc(i) 1

2bc(m⊕n)

∑

u∈Bm⊕n

(−1)bc(u)f(u⊕ i⊕ c)

=
1

2bc(n)

∑

i∈Bn

(−1)bc(i)P (f,m⊕ n, i⊕ c)

2
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Theorem 6 (Nonzero Probe Existence) Given a maximal nonzero Walsh coefficient
wm, for any a: a ⊆ m and any c : c ∈ Bm, there exists an i ∈ Bm⊕a such that

P (f, a, i⊕ c) 6= 0 ∀c ∈ Bm

Proof: By the Maximal Probe Corollary, P (f,m, c) = wm 6= 0 for any c ∈
Bm. By the Probe Recursion Theorem applied with n = m⊕ a,

P (f,m, c) =
1

2bc(n)

∑

i∈Bn

(−1)bc(i)P (f,m⊕ n, i⊕ c)

Thus, there must exist an i ∈ Bn such that P (f,m⊕n, i⊕ c) = P (f, a, i⊕ c) 6= 0.
2

6 The Linkage Hypergraph

A hypergraph. is a convenient way to think of the interaction between bits. A
hypergraph is a collection of vertices V together with a family of nonempty
subsets E of V called hyperedges. The vertex of the hypergraph can be used
to represent a set of epistatically dependent bits. A linkage hypergraph is
a hypergraph that represents all the sets of epistatically linked bits. A set of
vertices, each corresponding to mask m 6= 0, is a hyperedge if there is a c ∈
Bm such that P (f,m, c) 6= 0. Therefore a hyperedge can be identified by the
corresponding mask. The order of a hyperedge is the number of ones in the
mask. Gao proposed a similar graph corresponding to the order-2 hyperedges
the interaction graph (Gao, 2003).

In view of Theorem 6, the mask m is a hyperedge if and only if there is a
j ⊇ m such that wj 6= 0. Thus, we have the following corollary.

Corollary 7 If m is a hyperedge of the hypergraph, and if a ⊆ m, then a is also a
hyperedge.

The Order-j Linkage Detection Algorithm in Figure 1 constructs the set of
order-j hyperedges of the linkage hypergraph. The order-2 version of this al-
gorithm is similar to the LINC algorithm of (Munetomo and Goldberg, 1999b).
However, they start with a population of strings. Then each probe is done
using one of the strings of the population to provide the background for the
probe. In Figure 1 we use a random background. Later in this article we will
compare this approach with using a population.

For an arbitrary function f it is impossible to conclude anything conclu-
sively from evaluating f at a subset of points. For example, if f would be
k-epistatically bounded except for the function value at one point, then the
above algorithm for j > k will return 0 for any probe unless the probe happens
to sample the one exceptional point. For a large string length, the probability
that this one exceptional point is sampled can be very small.

8



DETECT-LINKAGE(j,N )
begin

V ← {0, 1, . . . , L− 1}
E ← ∅
for each mask m with bc(m) = j do

if m /∈ E then
for i← 1 to N do

c← a random string in Bm

if P (f,m, c) 6= 0 then
E ← E ∪ {m}
break

end if
end for

end if
end for
return E

end DETECT-LINKAGE

Figure 1: The Order-j Linkage Detection Algorithm using a random back-
ground string.

Thus, assumptions on f are needed in order to use the Order-j Linkage
Detection Algorithm to make conclusions. The natural assumption is that f is
k-epistatically bounded. The following theorems give a worst-case complexity
analysis of the Order-j Linkage Detection Algorithm in this case. This will
give us an upperbound on the amount of work to guarantee that all order-j
hyperedges are detected with at least probability δ.

Theorem 8 (Nonzero Probe Probability) Let f be k-epistatically bounded and let m
be a mask corresponding to an order-j hyperedge of the linkage hypergraph of f . If c
is a randomly chosen string in Bm, then the probability that P (f,m, c) 6= 0 is at least
2j−k.

Proof: Since m is a hyperedge by the Nonzero Probe Existence Theorem
there is a u such that m ⊆ u and wu 6= 0. Without loss of generality we can
assume that u has the property that u ⊂ v ⇒ wv = 0. By assumption, bc(u) ≤ k.
Theorem 6 shows that there is at least one i ∈ Bu⊕m such that P (f,m, i ⊕ b) 6=
0 for any b ∈ Bu. The probability that the randomly selected background c
matches some such i on the positions masked by u⊕m is at least 2−bc(u⊕m) =
2bc(m)−bc(u) ≥ 2j−k.

2

The lower bound of Theorem 8 cannot be improved for functions that are
k-epistatically bounded. To see this, start with a (j − 1)-epistatically bounded
function whose support is m with bc(m) = k, and then perturb the value of
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one point. Any probe that does not include the perturbed point will return a
value of zero. Since an order-j probe includes 2j points, and since there are 2k

probes, the probability of including the perturbed point is 2j−k.

Theorem 9 Let f be k-epistatically bounded and let J be the number of order-j hy-
peredges in the linkage hypergraph of f . If the number of iterations N in the Order-j
Linkage Detection Algorithm is chosen so that either

N ≥

{

ln(1−δ1/J )
ln(1−2j−k)

if j < k

1 if j = k
(2)

or

N ≥

{

−2k−j ln(1− δ1/J ) if j < k

1 if j = k

then the probability that all order-j hyperedges are detected is at least δ.

Proof: In the following, a “success” is the detection of a nonzero probe.
Theorem 8 shows that the probability of failure for one probe on one trial is at
most 1−2j−k. Thus, the probability of failure onN independent trials is at most
(1−2j−k)N , and the probability of success onN trials is at least 1−(1−2j−k)N .
The probability of success on all J hyperedges is at least

(

1− (1− 2j−k)N
)J

Thus, we want to choose N so that
(

(1− (1− 2j−k))N
)J
≥ δ

1− δ1/J ≥ (1− 2j−k)N

ln(1− δ1/J ) ≥ N ln(1− 2j−k)

ln(1− δ1/J )

ln(1− 2j−k)
≤ N

To prove the second formula, we need to show that

−2k−j ln(1− δ1/J ) ≥
ln(1− δ1/J )

ln(1− 2j−k)

⇐⇒ 2k−j ≥ −
1

ln(1− 2j−k)
by dividing both sides by − ln(1− δ1/J )

⇐⇒ 2j−k ≤ − ln(1− 2j−k) by inverting both sides .

By the Taylor series for − ln(1−x), we see that − ln(1−x) ≥ x, or that − ln(1−
2j−k) ≥ 2j−k.

These formulas are defined when j < k, but fail when j = k. Fortu-
nately we know by Maximal Probe Corollary that if the function is indeed
k-epistatically bounded a single probe is all that is required.

2
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Lemma 10

lim
J→∞

− ln(1− δ1/J )

ln J
= 1

Proof: First, we apply l’Hôpital’s rule:

lim
J→∞

− ln(1− δ1/J )

ln J
= lim

J→∞

−δ1/J ln δ

J(1− δ1/J )

The limit of the numerator is clearly ln δ.
To evaluate the limit of the denominator, make the variable change x = 1/J ,

and take the limit as x→ 0. Then apply l’Hôpital’s rule again.

lim
x→0

1− δx

x
= lim

x→0

δx ln δ

1
= ln δ

2

We next consider how the number N of iterations increases as the string
length increases for a class of fitness functions.

Corollary 11 Assume a class of k-epistatically bounded fitness functions where the
number of maximal Walsh coefficients isO(L). If δ is constant, the number of function
evaluations required by the DETECT-LINKAGE algorithm isO

(

2k
(

L
j

)

(

lnL+ ln
(

k
j

)

))

.

If j is constant, then the number of function evaluations is O
(

2kLj lnL
)

.

Proof: By Theorem 9 it is sufficient to choose N to be −2k−j ln(1 − δ1/J ).
For each of the N iterations of the inner loop a probe is done that requires 2j

function evaluations. The outer loop is executed
(

L
j

)

times, so the total num-
ber of function evaluations is: −2k

(

L
j

)

ln(1 − δ1/J ), and by Lemma 10, this is

O
(

2k
(

L
j

)

ln J
)

.
The number of order-j hyperedges in a single maximal Walsh coefficient of

order k is bounded by
(

k
j

)

, and we have assumed that the number of maximal

(order k) hyperedges is O(L), so J is O
(

(

k
j

)

L
)

. Thus, ln J is O
(

lnL+ ln
(

k
j

)

)

.

Note that ln
(

k
j

)

≤ ln
(

kj
)

= j ln k. If j is constant, then j ln k is O(lnL) so
the last result of the corollary follows. 2

Strictly speaking, Corollary 11 does not apply when probe backgrounds are
chosen from a population (as is the case for the LINC algorithm of (Munetomo
and Goldberg, 1999b)) since the above analysis assumes that the backgrounds
of probes are chosen independently. However, our empirical results show that
these formulas are quite accurate when the backgrounds are chosen from a
population. (See Section 11.)

For j = 2, this result can be compared to the population sizing result of
(Munetomo and Goldberg, 1999b). If r is the probability of successfully de-
tecting a single subfunction, they give the population size needed as approxi-
mately −2k ln(1− r). This translates into −2kL2 ln(1− r) function evaluations.
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Since they don’t address the question of whether the probabilities of detecting
subfunctions are independent of the subfunction, this does not translate into
a statement about the overall probability (analogous to our δ) of detecting all
subfunctions.

7 Computing the Walsh Coefficients Using the Kargupta-
Park Top-down Algorithm

Kargupta and Park (Kargupta and Park, 2001) give a “deterministic” algorithm
to find the Walsh coefficients of a function f with k-bounded epistasis. It is
“top-down” since it does high-order probes before low-order probes. In this
section we show how this algorithm can be expressed in terms of probes.

Let wm be a maximal nonzero Walsh coefficient. The Maximal Probe Corol-
lary shows that P (f,m, c) = wm for any c ∈ Bm. Thus, if f has k-bounded
epistasis, and if we do the probe P (f,m, 0) where bc(m) = k, the result will be
wm. Thus, all of the order-k Walsh coefficients can be computed by doing

(

L
k

)

probes, each of which uses 2k function evaluations.
Let j be a mask with bc(j) = k − 1. Then Theorem 3 gives the equation

P (f, j, 0) = wj +
∑

j⊂u

wuψu(0) = wj +
∑

j⊂u

wu (3)

(Note that ψu(0) = 1.) The potentially nonzero Walsh coefficients in the sum-
mation are all of order k and have been computed. Thus, wj can be com-
puted from P (f, j, 0) plus these order-k Walsh coefficients. Let m be such that
bc(m) = k and j ⊆ m. If the Probe Recursion Theorem is applied to P (f,m, 0)
with n = m ⊕ j, then the first term in the summation is P (f, j, 0). This shows
that all function evaluations necessary to compute P (f, j, 0) have already been
done in the computation of P (f,m, 0). (This observation is ours and is not
included in (Kargupta and Park, 2001).)

The same idea can be used to compute the lower-order Walsh coefficients.
Thus, the Walsh coefficients are computed in order of decreasing bit count,
starting with bit count k.

8 Detecting linkage and computing the Walsh coef-
ficients

Kargupta and Park (Kargupta and Park, 2001) give a “bottom up” randomized
algorithm that finds the nonzero Walsh coefficients. They suggest that they can
find the values of these nonzero Walsh coefficients, but the method to do this is
not included in their algorithm, and so presumably one applies the algorithm
referred to in Section 7.

In this section, we give a well-specified algorithm that efficiently finds the
nonzero Walsh coefficients and computes their values. The algorithm consists
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of two passes. The first proceeds in a bottom-up fashion to find which Walsh
coefficients are nonzero, and then it proceeds top-down to determine their val-
ues without doing any additional function evaluations. (We assume that func-
tion evaluations are disproportionately expensive to compute.)

A key observation is that if probe backgrounds are determined by using a
population, as in the Munetomo/Goldberg LINC algorithm, then higher order
probes can be computed relatively cheaply by using the function evaluations
of previously computed lower order probes. This is justified by Theorem 13
below. In other words, computing P (f,m, c) can be done with only one ad-
ditional function evaluation as long as the probes for all a, a ⊂ m, have been
computed using the same background c.

Lemma 12 Let h(a, i) be any 2-argument function. Given a value x:
∑

a∈Bx

∑

i∈Bm

h(a, i) =
∑

i∈Bx

∑

z∈Bi⊕x

h(i⊕ z, i)

Proof:
The two sides of the equation are equal if for a given x they sum over the

same set of arguments to h. Beginning with the set of argument tuples for the
left hand side we transform it into the set of argument tuples for the right hand
side.

∑

a∈Bx

∑

i∈Bm

h(a, i) =
∑

a:a⊆x

∑

i:i⊆a

h(a, i)

=
∑

a:a⊆x

∑

i:i⊆a⊆x

h(a, i)

=
∑

i:i⊆x

∑

a:i⊆a⊆x

h(a, i)

=
∑

i:i⊆x

∑

z:i⊆i⊕z⊆x,i∧z=0

h(i⊕ z, i)

=
∑

i:i⊆x

∑

z:z⊆i⊕x

h(i⊕ z, i)

=
∑

i∈Bx

∑

z∈Bi⊕x

h(i⊕ z, i)

2

Theorem 13 For any m ∈ B , c ∈ Bm,

f(m⊕ c) =
∑

a∈Bm

(−2)bc(a)P (f, a, c)

13



This can be restated as:

(−2)bc(m)P (f,m, c) = f(m⊕ c)−
∑

a∈Bm\{m}

(−2)bc(a)P (f, a, c)

Proof:

P (f, a, c) =
1

2bc(a)

∑

i∈Ba

(−1)bc(i)f(i⊕ c)

(−1)bc(a)2bc(a)P (f, a, c) = (−1)bc(a)
∑

i∈Ba

(−1)bc(i)f(i⊕ c)

∑

a∈Bm

(−2)bc(a)P (f, a, c) =
∑

a∈Bm

ψ~1(a)
∑

i∈Ba

ψ~1(i)f(i⊕ c)

=
∑

a∈Bm

∑

i∈Ba

ψ~1(a)ψ~1(i)f(i⊕ c)

Using Lemma 12 with
h(a, i) = ψ~1(a)ψ~1(i)f(i⊕ c) : =

∑

i∈Bm

∑

z∈Bm⊕i

ψ~1(z ⊕ i)ψ~1(i)f(i⊕ c)

=
∑

i∈Bm

∑

z∈Bm⊕i

ψ~1(z ⊕ i⊕ i)f(i⊕ c)

=
∑

i∈Bm

f(i⊕ c)
∑

z∈Bm⊕i

ψ~1(z)

By the Balanced Sum Theorem for Hyperplanes the inner sum is nonzero
only if ~1 ⊆ m⊕ i which can only happen if i = m. Therefore:

∑

a∈Bm

(−2)bc(a)P (f, a, c) = f(m⊕ c)
∑

z∈B0

ψ~1(z) = f(m⊕ c)

2

The algorithm takes advantage of previously computed function evalua-
tions by caching all function evaluations in a hash table. When the function
f is applied to a bit string, this hash table is checked before doing the actual
function evaluation. A second feature of the algorithm is that regions of the
bit representation can be shown not to contain any higher order epistasis and
hence are not reexamined in later portions of the algorithm.

The basic idea of the bottom-up part of the algorithm (TRAVERSE-HYPERGRAPH)
(See Figure 2) is to do a breadth-first traversal of the lattice of masks, starting
with the empty mask, then looking at the order-1 masks, order-2 masks, etc.
When a new mask m is considered for inclusion in the linkage hypergraph, all

14



submasks of order bc(m)−1 are checked for membership in the hypergraph. If
any of these submasks is not in the hypergraph, thenm cannot be in the hyper-
graph. If these tests succeed, then a sequence of probes is done to determine if
the mask is in the hypergraph.

Note that the maximum order k of epistasis is not an input to the algorithm.
The algorithm determines k. However, the algorithm may not be computation-
ally tractable if there are many high order subfunctions.

The backgrounds of the probes can be determined either by using a popula-
tion or by randomly choosing background strings. The first element of the pop-
ulation or the first background is the all-zeros string since this simplifies the
computation of the Walsh coefficients in the top-down part of the algorithm.
If a population is used, the remainder of the population is chosen randomly.
The value returned by the probe using the all-zeros background is saved in the
hash-table hypergraph which is also used to determine whether a mask has
been added to the hypergraph.

In addition to the queue used for the breadth-first traversal, the masks
added to the hypergraph are stored in a linked list hypergraphList which is
traversed in the top-down part of the algorithm.

TESTBYPROBES(a,N) does up to N probes using the mask a. (This is simi-
lar to the Detect-Linkage linkage algorithm of Figure 1 and so is not provided.)
If one of these probes is nonzero (or greater than a tolerance in practice), then
it returns the probe value corresponding to the all-zeros string. If all probes
are zero, then it returns null. The value of N can depend on the bit-count of
the mask a and can be based on Equation 2 of Theorem 9. Thus, some prior
knowledge about k and the number of hyperedges would be useful in order to
apply Equation 2. The complexity analysis done in section 8.1 might be useful
in this regard.

One way to do this would be to apportion parts of the error probability δ to
masks of different order. For example, if k = 5, and assuming that one wants
the overall probability of error to be less than δ, then one would use δ/4 in
Equation 2 for j = 1, 2, 3, 4 respectively.

In a practical implementation, one might want to add all masks of up to
some cardinality to hypergraphList even if TESTBYPROBES returns null. This
would be especially true of the empty mask of order 0 since Equation 2 does
not apply.

SUPERSET-LIST(m) is a list of masks a such that bc(a) = bc(m) + 1 and
so that a is obtained by adding a 1 to m to the right of the rightmost 1 of m.
Note that if a is a mask in the hypergraph, then it will have a subset m so that
a ∈SUPERSET-LIST(m).

The top-down part of the algorithm (COMPUTE-WALSH-COEFS) (See Figure
3) traverses the hyperedges of hypergraph using the list hypergraphList from
higher order masks to lower order, that is in the reverse order from which they
were added to the hypergraph. The Walsh coefficients are computed using
only the function evaluations done in the bottom-up part of the algorithm.

As an example, suppose that L = 4 and the the fitness function is a sum of a
function that depends on positions {0, 1, 2} and a function that depends on po-
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TRAVERSE-HYPERGRAPH()
population.initialize()
hypergraphList.initialize()
queue.initialize()
m← { } // Empty mask
ProbeV alue←TESTBYPROBES(m,N(bc(m)))
if ProbeV alue 6= null then

queue.add(m)
hypergraph[m]← ProbeV alue

end if
while queue.notEmpty() do

m← queue.remove()
probeV alue← hypergraph[m]
for a ∈ SUPERSET-LIST(m) do

if all subsets of a of cardinality bc(m) are in the hypergraphList then
ProbeV alue←TESTBYPROBES(a,N(bc(a)))
if ProbeV alue 6= null then

queue.add(a)
hypergraph[a]← ProbeV alue
hypergraphList.addF irst(a)

end if
end if

end for
end while

Figure 2: The Traverse-Hypergraph algorithm, which is the linkage detection
portion of the linkage detection/Walsh coefficient computation algorithm.

sitions {1, 2, 3}. The masks corresponding to the sets { }, {0}, {1}, {2}, {3}, {0, 1}, {0, 2}
will be added to hypergraph and to hypergraphList. TESTPROBES will return null
for the mask corresponding to {0, 3}. The masks corresponding to {1, 2}, {1, 3}, {2, 3}, {0, 1, 2}
will be added to hypergraph and to hypergraphList. The masks corresponding to
{0, 1, 3} and {0, 2, 3} will fail the subset test.

The algorithm is based on Equation 3. This equation would suggest that to
compute wa, one would want to traverse those supersets of a that correspond
to hyperedges. However, in the top-down algorithm we are already traversing
these superset hyperedges, and it is more efficient to add the Walsh coefficient
of each of these superset hyperedges to its subsets, and this is what the algo-
rithm does. In other words, as the supersets of a are traversed in the algorithm,
their Walsh coefficients are added to wCoef [a].
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COMPUTE-WALSH-COEFS(hypergraphList)
for m ∈ hypergraphList do //traverse in reverse order from order added

probeV alue← hypergraph[m]
if wCoef [m] 6= null then wCoef [m]← wCoef [m] + probeV alue
else wCoef [m]← probeV alue end if
for each a ⊂ m do

if wCoef [a] 6= null then wCoef [m]← wCoef [a]− wCoef [m]
else wCoef [a]← −wCoef [m] end if

end for
end for

Figure 3: Compute-Walsh-Coefs which is the top-down part of the linkage de-
tection/Walsh coefficient computation algorithm used to calculate the Walsh
coefficients.

8.1 Complexity Analysis

In this section we give an analysis of the time-complexity of the TRAVERSE-
HYPERGRAPH algorithm in the case where the fitness function is an embedded
landscape with randomly chosen components of a fixed order k. We suppose
that the number s of such components grows linearly with the string length L.

This covers a large and important practical category of problems but is by
no means complete. We assume that k is fixed, and so our analysis is only in
terms of the string length L. A random fitness function is chosen by choosing
ML order-k masks with replacement from the set of

(

L
k

)

possible masks. All
nonzero Walsh coefficients of the fitness function must be contained within
these masks. Otherwise, the fitness function is arbitrary within this constraint.

This is almost the class of functions described by (Gao, 2003) as the pure
random modelF(L, s, k), except that he assumes that support for subfunctions
are chosen randomly without replacement from the

(

L
k

)

possible sets of size k,
and we assume random choice with replacement.

Strictly speaking, the analysis of this section applies to the version of the
TRAVERSE-HYPERGRAPH algorithm that uses random backgrounds for all probes
and that uses no function caching. Under the assumption that the epistasis or-
der k is fixed, this only changes the number of function evaluations by at most
the constant factor of 2k, and thus does not change the asymptotic complexity.

Given a specific fitness function and given a mask a of order r, there are
three possibilities for the mask. First, the mask may be a subset of a nonzero
Walsh coefficient. We will call this a type-1 mask. Second, it may not be a subset
of a nonzero Walsh coefficient, but it may have an order r − 1 submask which
is a subset of a nonzero Walsh coefficient. We will call this a type-2 mask. Note
that TEST-BY-PROBES must always return null when called on a type-2 mask.
And third, it may neither be a subset of a nonzero Walsh coefficient nor have
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any order r − 1 submasks which are subsets of nonzero Walsh coefficients. We
will call this a type-3 mask. Note that a type-3 mask will never be tested in the
TRAVERSE-HYPERGRAPH algorithm.

The number of probes done in a call to TEST-BY-PROBES is determined by
Equation 2 of Theorem 9, and the number of function evaluations per probe is
bounded by 2r where r is the order of the mask. Corollary 11 shows that the
number of probes is O(logL).

The number of type-1 masks contained in one maximal Walsh coefficient
of the fitness function is bounded by 2k. Thus, under the assumption that k is
fixed, the total number of type-1 masks is O(L), and the number of function
evaluations done in tests of type-1 masks is O(L logL).

Given that a mask is of type-2 or type-3, we want to find the probability
(over fitness functions satisfying our assumptions) that it is of type-2.

Lemma 14 Let m be a randomly chosen mask with bc(m) = k. Let a be a mask with
bc(a) = r such that a * m. Let b ⊂ a where bc(b) = bc(a) − 1. The probability that
b ⊆ m is given by:

P (b ⊆ m) =
|m : b ⊆ m| − |m : a ⊆ m|

|m : bc(m) = k| − |m : a ⊆ m|
=

(

L−r+1
k−r+1

)

−
(

L−r
k−r

)

(

L
k

)

−
(

L−r
k−r

)

Proof: There are
(

L
k

)

possibilities for mask m with bc(m) = k. Of these,
(

L−r
k−r

)

contain a, and
(

L−r+1
k−r+1

)

contain b. Thus, the number of masks m that
contain b but do not contain a is

(

L−r+1
k−r+1

)

−
(

L−r
k−r

)

. The formula of the lemma
follows. 2

Lemma 15 Let m be a randomly chosen mask with bc(m) = k. Let a be a mask
with bc(a) = r such that a * m. Let b1, b2, . . . , bw be distinct masks with bc(bj) =
bc(a)− 1 and b ⊂ a for all j = 1, 2, . . . , w. Then the probability that bj ⊆ m for some

j is wQ where Q =
(L−r+1

k−r+1)−(L−r
k−r)

(L
k)−(L−r

k−r)
.

Proof: Note that bj ⊆ m implies bv * m for all v 6= j. Lemma 14 shows that
P (bj ⊆ m) = Q for each j = 1, 2, . . . , w, and since these are disjoint events, the
probability of their union is the sum of their probabilities. Thus, P (∃j . bj ⊆
m) = wQ. 2

The Inclusion/Exclusion Principle (Niven, 1965) from combinatorics is pro-
vided for reference for the following lemma without proof:

Lemma 16 Let Bi, i ∈ I, be a finite collection of sets. Then

P

(

⋃

i∈I

Bi

)

=

|I|
∑

w=1

(−1)w+1
∑

J⊆I

|J |=w

⋂

j∈J

P (Bj)
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Note that if |I| = 3, then the above lemma says that

P (B1 ∪B2 ∪B3)

= P (B1) + P (B2) + P (B3)− P (B1∩B2)− P (B1∩B3)− P (B2∩B3) + P (B1∩B2∩B3)

Theorem 17 Let a be a mask with bc(a) = r. Let m1,m2, . . . ,ms be masks with
bc(mi) = k randomly and independently chosen such that a * mi for any i =
1, 2, . . . , s. (Since the mi are chosen with replacement, it is possible that mi = mj

for some i 6= j.) The probability that a is a type-2 mask is given by

U(L, k, r, s) =

r
∑

j=0

(−1)j

(

r

j

)

(1− jQ)s (4)

where

Q =

(

L−r+1
k−r+1

)

−
(

L−r
k−r

)

(

L
k

)

−
(

L−r
k−r

) (5)

Proof: Let the order r − 1 subsets of a be b1, b2, . . . , br. In other words,
b1, b2, . . . , br are distinct masks such that bc(bj) = bc(a)− 1 and bi ⊂ a for all j.

Let Bj be the event that bj * mi for all i = 1, 2, . . . , s. If any Bj happens,
then a cannot be a type-2 mask. Thus, if A is the event that a is a type-2 mask,
then the complement A of A is the union of the Bj . Thus, we have:

P (A) = 1− P





r
⋃

j=1

Bj





We want to apply the formula of Lemma 16, so we want to compute the prob-
ability of the intersection of an arbitrary collection of Bjs.

Given a subset J ⊆ {1, 2, . . . , r} with |J | = w, and given a fixed i, Lemma
15 shows that the probability that bj * mi for all j ∈ J is 1 − wQ. Since the
masks mi are chosen independently, the probability that for all i = 1, 2, . . . , s,
bj * mi for all j ∈ J is (1− wQ)s. In other words,

P





⋂

j∈J

Bj



 = (1− wQ)s

Note that there are
(

r
w

)

cardinality w subsets of {1, 2, . . . , r}. Thus, applying
the formula of Lemma 16, we get that

P (A) = 1−
r
∑

w=1

(−1)w+1

(

r

w

)

(1− wQ)s

=
∑

w=0

(−1)w

(

r

w

)

(1− wQ)s
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2

A small example: Let L = 4, k = 3, s = 3. In this example, we will write
masks as binary strings. Let a = 0111 so that r = 3. Let b1 = 0011, b2 = 0101,
b3 = 0110. Then the mi are chosen from 3 possible order-3 masks that do not
contain a, namely c1 = 1011, c2 = 1101, and c3 = 1110. There are 27 ways
to choose the mi, namely all sequences of three choices from {c1, c2, c3} (with
replacement). It is not hard to see that a is a type-2 mask if and only if each
of c1, c2, and c3 is chosen once. There are 6 out of the 27 ways of choosing
the mis that satisfy this condition, so the probability that a is a type-2 mask is
6/27 = 2/9.

Applying the formula of Theorem 17 gives

Q =

(

L−r+1
k−r+1

)

−
(

L−r
k−r

)

(

L
k

)

−
(

L−r
k−r

) =

(

2
1

)

−
(

1
0

)

(

4
3

)

−
(

1
0

) =
1

3

and

P (a is a type-2 mask )

= 1− 3(1−Q)3 + 3(1− 2Q)3 − (1− 3Q)3 = 1− 3 ·

(

2

3

)3

+ 3 ·

(

1

3

)3

− 0 =
2

9

Another small example: Let L = 4,k = 2, r = 2, s = 2. Without loss of
generality, we can choose a particular mask a, and ask what is the probability
that it is a type-1 mask, a type-2 mask, or a type-3 mask. Thus, let us choose
a = 0011. There are 6 possible order-k masks, and thus there are 6s = 62 = 36
possible fitness functions. Thus, we are interested in the type of mask a for
each of these 36 fitness functions. This is given in the following table:

0011 0101 0110 1001 1010 1100
0011 1 1 1 1 1 1
0101 1 3 2 3 2 3
0110 1 2 3 2 3 3
1001 1 3 2 3 2 3
1010 1 2 3 2 3 3
1100 1 3 3 3 3 3

From the table, we see that the probabilities that a is a type-1, type-2, and
type-3 mask are 11/36, 17/36, and 8/36. The probability that a is a type-2 mask
given that it is of type-2 or type-3 is 8/25. This corresponds to Theorem 17
where Q = 2/5 and U(L, k, r, s) = 8/25.

A larger example: Let k = 3 and s = 4∗L. For the sequenceL = 〈20, 40, 80, 160, 320, 640〉
and r = 2, the values of U(L, k, r, s) given by Equation 4 are

〈.999984, .999986, .999987, .999987, .999987, .999988〉

For the same L sequence and r = 3, the probabilities are:

〈.339127, .091055, .017298, .002692, .000376, .000050〉
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Note that there are
(

L
r

)

possible order r probes. Thus, the expected number
of order r probes should not exceed

(

L
r

)

U(L, k, r, s), where U(L, k, r, s) is given
by Equation 4. For the above L sequence, for r = 2, these values are

〈190.00, 779.99, 3159.96, 12719.84, 51039.36, 204477.46〉

and for r = 3 these values are

〈386.61, 899.62, 1421.17, 1803.42, 2036.64, 2165.73〉

These values are confirmed by experiment.

Lemma 18
r
∑

j=0

(−1)j

(

r

j

)

ji = 0 for i = 0, 1, . . . , r − 1

r
∑

j=0

(−1)j

(

r

j

)

ji = (−1)rr! for i = r

Proof: Start with the polynomial

(x+ 1)r =

r
∑

j=0

(

r

j

)

xj (6)

Let Φ denote the operator x · d
dx . (In other words, the operator Φ takes the

derivative with respect to x, and then multiplies by x.) After one application
of Φ, we get

Φ((x+ 1)r) = xr(x+ 1)r−1 =
r
∑

j=0

(

r

j

)

jxj

After i < r applications of the operator to the left side of 6, we see that every
term includes an (x + 1) factor. After i < r applications of the operator to the
right side of Equation 6, we get

r
∑

j=0

(

r

j

)

jixj

Substituting x = −1 gives the first equation of the lemma.
After r applications of the operator to the left side, we see that there is one

term r!xr that does not include an (x + 1) factor. After r applications of the
operator to the right side, we get

r
∑

j=0

(

r

j

)

jrxj

and again substituting x = −1 gives the second equation of the lemma. 2

Next we collect some facts that will be useful in the proof of the next theo-
rem.

21



Lemma 19
(

L

r

)

≤
Lr

r!
= O(Lr) (7)

(

ML

i

)

≤
(ML)i

i!
= O(Li) (8)

Q =
L−r+1
k−r+1 − 1

∏r−1
i=0

L−i
k−i − 1

= O(L1−r) (9)

∣

∣

∣

∣

∣

∣

r
∑

j=0

(−1)j

(

r

j

)

ji

∣

∣

∣

∣

∣

∣

≤
r
∑

j=0

(

r

j

)

ji = O(ri) (10)

Proof:
(

L

r

)

=

∏r−1
i=0 L− i

r!
≤
Lr

r!

The proof of Equation 8 is similar.
Equation 9 follows by factoring and canceling

(

L−r
k−r

)

from the numerator
and denominator of Q.

r
∑

j=0

(

r

j

)

ji ≤ ri
r
∑

j=0

(

r

j

)

= ri2r = O(ri)

2

Theorem 20 Let k and M be constant.
For r = 1:

U(L, k, r,ML) = 1

and thus the expected number of order-1 type-2 masks is O(L).
For r = 2:

lim
L→∞

U(L, k, r,ML) = 1− 2e−kM + e−2kM

and thus the expected number of order-2 type-2 masks is O(L2).
For r = 3:

lim
L→∞

(

L

r

)

U(L, k, r,ML) =
1

6
M3k3(k − 1)3

and thus the expected number of order-3 type-2 masks is O(1).
For r > 3:

lim
L→∞

(

L

r

)

U(L, k, r,ML) = 0

and thus the expected number of order-r type-2 masks is o(1).
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Proof: For r = 1 it is easy to see that Q = 1, and substituting into Equation
4 gives U(L, k, 1,ML) = 1. There are

(

L
r

)

= O(L) possible order-1 masks, so
the expected number of type-2 order-1 masks is Θ(L).

For r = 2, Equation 9 shows that for large L, Q is approximately k/L. Sub-
stituting k/L for Q in Equation 4, we have

U(L, k, 2,ML) ≈ 1− 2

(

1−
k

L

)ML

+

(

1−
2k

L

)ML

It is well known that limn→∞

(

1− 1
n

)nx
= e−x. A change of variable gives the

limit result. Since there are
(

L
r

)

= O(L2) possible order-2 masks, the expected
number of type-2 order-2 masks is Θ(L2).

For r ≥ 3, we have
(

L

r

)

U(L, k, r,ML) =

(

L

r

) r
∑

j=0

(−1)j

(

r

j

)

(1− jQ)ML

=

(

L

r

) r
∑

j=0

(−1)j

(

r

j

)ML
∑

i=0

(

ML

i

)

(−1)i(jQ)i by the binomial
theorem

=

(

L

r

)ML
∑

i=0

(

ML

i

)

(−1)iQi
r
∑

j=0

(−1)j

(

r

j

)

ji

=

ML
∑

i=r

(

L

r

)(

ML

i

)

(−1)iQi
r
∑

j=0

(−1)j

(

r

j

)

ji by Lemma 18

(11)

Given ε > 0, we claim the existence of a u such that for any L with u ≤ML,
(

L

r

) ∞
∑

i=u

(

ML

i

)

Qi
∑

(

r

j

)

ji < ε/2

Use Lemma 19, we see that:
(

L

r

) ∞
∑

i=u

(

ML

i

)

Qi
∑

(

r

j

)

ji ≤ CLr
∞
∑

i=u

Li Li(1−r)ri for some constant C

= CLr
∞
∑

i=u

(

rL2−r
)i

= CLr
(

rL2−r
)u

∞
∑

i=0

(

rL2−r
)i

= CruLr+u(2−r) 1

1− rL2−r

This quantity can be made arbitrarily small by choosing L sufficiently large.
Thus, if u is chosen to be sufficiently large, then the above can be made to be
less than ε/2. This proves the claim.
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For r = 3, the i = r = 3 term of the summation on line 11 is:

L3

6

ML(ML− 1)(ML− 2)

6
(−1)

(

k(k − 1)

L2

)3

(−1)3! +O(L−1)

=
M3k3(k − 1)3

6
+O(L−1)

We can choose L to be sufficiently large that theO(L−1) term above is less than
ε

2u .
For r ≥ 3 and 3 < i < u, the absolute value of the ith term of the summa-

tion in Equation 11 is easily seen to be O(L−1). Thus, we can choose L to be
sufficiently large that this absolute value is less than ε

2u .
We have shown that for r ≥ 3, the summation of line 11 is less than ε from

the claimed limit. 2

Corollary 21 For randomly chosen fitness functions whose maximal Walsh coeffi-
cients are of order k, and where the number of maximal Walsh coefficients is O(L),
the expected number of function evaluations of the TRAVERSE-HYPERGRAPH and
COMPUTE-WALSH-COEFFICIENTS algorithms is O(L2 logL). (This assumes that
k and the algorithm error probability δ are constant as L increases.)

Thus, under the fitness function model where the maximal Walsh coeffi-
cients are at most order k, and where the number of maximal Walsh coef-
ficients grows linearly with L, the TRAVERSE-HYPERGRAPH and COMPUTE-
WALSH-COEFFICIENTS algorithms can find the complete structure of fitness
function with a probability of error for the entire algorithm of at most δ using
O(L2 logL) function evaluations.

Note that the hypothesis of linear growth of the number of maximal Walsh
coefficients is satisfied by all fitness functions which are sums of nonoverlap-
ping subfunctions of fixed order and by the NK fitness functions when K is
fixed. It is also satisfied by k-MAXSAT problems where the ratio of clauses to
variables is fixed.

9 Using the Walsh coefficients to define the func-
tion

Once the Walsh coefficients are known, the function f is completely known.
This section describes how f could be computed in this case.

The basic idea is to represent f as an embedded landscape. This could be
done with one subfunction per nonzero Walsh coefficient, but in many cases, it
can be done so that evaluation of f is more efficient.

Theorem 22 The function f can be written as an embedded landscape where there is
a subfunction for each maximal Walsh coefficient. The support of a subfunction is the
index of the corresponding maximal Walsh coefficient.
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Proof: For each index j such that wj 6= 0, let a(j) be the index of some
maximal nonzero Walsh coefficient so that j ⊆ a(j). For each index m of a
maximal Walsh coefficient, let

gm =
∑

j

[a(j) = m]wjψj

Then clearly f =
∑

m gm.
Let N be the set of maximal nonzero Walsh coefficients, Ni. It is clear that

the set of all nonzero Walsh coefficients can be partitioned into subsets Si, one
for each Ni such that Ni is in Si. ∀wj ∈ Si, wj ⊆ Si. Note that this partitioning
is not unique. Each subset Si defines a subfunction whose support is Ni. The
subfunction fi can be enumerated by performing the inverse Walsh transform
on the vector of Walsh coefficients whose indices are contained in the index of
Ni.

2

The fast Walsh transform can be used to compute a function table for each
subfunction of the embedded landscape. If the subfunction has a support mask
of bit count k, then the fast Walsh transform can be computed in time Θ(k log k).
Then the function f can be computed by summing the values of the subfunc-
tions.

10 How the algorithms of this paper can be applied
in practice

The section describes in somewhat imprecise terms how the algorithms of this
paper might be used in the more general situation where the assumption of
k-bounded epistasis is not true, or is only approximately true.

10.1 Finding the linkage groups

The traditional genetic algorithm motivation for linkage detection algorithms
has been the preservation of building blocks (Munetomo and Goldberg, 1999b).
Goldberg (Goldberg, 1989) defines a building block as a “highly-fit, short-defining-
length schema”. While the meaning of “highly-fit” is not completely clear, a
building block could be defined as a configuration of a small number of loci
which is part of a highly fit solution to the problem. Two loci are tightly linked
if one or more of the Walsh coefficients of some of the masks which contain
both loci are relatively large, or equivalently if there is some background so
that a probe of the corresponding two-bit mask has relatively large magnitude.
A collection of loci is called a linkage group if they are pairwise tightly linked.

If a collection of loci form a linkage group, then a configuration of these
loci might be a building block. One theory is that genetic algorithms work
by assembling building blocks into a high-fitness solution. (This theory is cer-
tainly true for some fitness functions. It remains to be seen how widely appli-
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cable the theory is.) According to this theory, it is important that the crossover
operation not be too disruptive of the building blocks, and this suggests that
the crossover operation should be designed so that linkage groups (groups of
highly linked loci) are not overly disrupted by the crossover operator.

We suggest the following method to find the linkage groups. Use the order-
2 DETECT-LINKAGE algorithm to find the linkage graph, except that we also
want to use probes to measure the strength or weight of edges. For each mask
of a nonzero probe do a total of N probes. Then some measure of the over-
all magnitude of these probes will be used to weight the edges of the linkage
graph. For example, this could be the maximum absolute value of a probe, or
the mean of the absolute values of the probes.

Now consider the sequence of edge weights, sorted in decreasing order.
If the fitness function is approximately additively separable, and if there is not
“hidden epistasis” which is not detected by the algorithm, then there should be
a transition from relatively large edge weights to relatively small edge weights.
(Those edges connecting loci which are in different separability components
will have relatively small edge weights.) Consider the subgraph of the link-
age graph whose edges are the edges with relatively large edge weights. If
this graph has multiple components, then the vertices of these components
should be the linkage groups. If there is no “natural” transition from relatively
large weight edges to small weight edges, then the fitness function is not ap-
proximately additively separable. This approach is similar to that proposed by
(Munetomo, 2002a).

There has been extensive previous work on the “linkage learning problem”.
Proposed methods to solve the “linkage learning” problem include perturba-
tional methods of (Munetomo and Goldberg, 1999a) and this paper, the link-
age learning genetic algorithm (LLGA) of (Harik and Goldberg, 2000; Chen
and Goldberg, 2003), the fast messy GA of Kargupta (Kargupta, 1996), and the
ECGA (Extended Compact Genetic Algorithm, an estimation of distribution al-
gorithm) of (Harik, 1999). Other estimation of distribution algorithms such as
the MIMIC algorithm of (de Bonet et al., 1997) and the BOA algorithm of (Pe-
likan et al., 1999) can also solve linkage problems. All of these methods except
the perturbational method of (Munetomo and Goldberg, 1999a) address the
linkage problem as part of trying to solve an optimization problem and thus
have a somewhat different focus from that of this paper and (Munetomo and
Goldberg, 1999a). The test functions used in the LLGA and the ECGA approach
are predominantly embedded landscapes with nonoverlapping subfunctions
where each subfunction is a trap function ((Deb and Goldberg, 1992)). In these
papers, sometimes a relatively small number of trap subfunctions are embed-
ded in a long genome with many other nonfunctional (constant) subfunctions,
and sometimes the trap functions are nonuniformly scaled. The LLGA ap-
proach seems to be limited to learning the linkage for a small (less than 10)
number of nontrivial subfunctions if the subfunctions are uniformly scaled.
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10.2 An estimation of distribution approach

Another approach is inspired by “estimation of distribution” algorithms (see,
for example (Mühlenbein and Mahnig, 1999) or (Pelikan et al., 1999)). The
idea is to build a directed acyclic graph model of the fitness function. The
linkage graph described above which contains the high-probe-weight edges
is the underlying undirected graph. Note that if one does multiple order-1
probes on the loci, then one also can get probe weights on the loci. This gives a
natural way to add directions to the edges of the graph—namely the direction
of an edge is from the locus of higher probe weight to the locus of lower probe
weight.

The idea of an estimation-of-distribution algorithm is to use the graphical
model of the fitness function to choose the next generation population. Then
selection is applied to this population, and a new graphical model is computed
to complete one generational cycle of the algorithm.

If results of the probes for a mask are consistent in sign, then the settings of
all but one of the loci for that mask will determine the setting of the remaining
locus that will increase the fitness function. For example, if all of the results
of an order-1 probe for a 1-bit mask are of one sign, this says that there is one
way to set the allele for that locus to increase the value of the fitness function
which is consistent over the entire sample used in doing the probes. If all of
the results of an order-2 probe over a 2-bit mask are of one sign, this says that
the setting of one of the two bits will determine the other bit.

11 Empirical results

In this section, we first give empirical results on the Order-2 Linkage Detec-
tion Algorithm of Section 6 to the “linkage learning” problem as it is defined
in (Harik and Goldberg, 2000). We give empirical evidence that the formulas
of Theorem 9 apply when probe backgrounds are chosen from a population
(rather than randomly as in the theorem), and to the algorithm of Section 8.
Finally, we give some results that show the size of problems that can be done
on commonly available hardware at the time that this paper was written.

The class of subfunctions that requires the largest number N of probes for
the algorithms of this paper are “needle-in-the-haystack” functions which are
constant except at a single point. For these functions, an order-1 probe will
return zero unless one of the two points evaluated in doing the probe is the
needle point. MAXSAT and one-max are problems whose subfunctions are of
this type.

The class of subfunctions requiring the next largest number of probes are
the subfunctions that are linear except at a single point. For these functions, an
order-2 probe will return zero unless one of the four points evaluated in doing
the probe is the exceptional point. The concatenated trap functions of (Deb and
Goldberg, 1992) and the deceptive functions of (Goldberg et al., 1993) can be of
this type.

27



One of test functions used in this section is an embedded landscape where
the subfunctions are linear with a randomly placed “needle”. The coefficients
of the linear function are chosen randomly from the interval [0, 1]. The needle is
a single point with a value of 0.1 greater than the corresponding value given by
the linear function. The support of each subfunction is randomly chosen when
the subfunctions are overlapping, and randomly chosen subject to the nonover-
lapping constraint when the functions are nonoverlapping. These functions are
the same difficulty as trap functions for the algorithms of this paper. (A trap
function is a linear function with a systematically placed needle.)

The algorithms of this paper were coded in Java and run on PC hardware.
Sean Luke’s “Mersenne twister” Java random number generator (http://www.cs.umd.edu/users/seanl/gp/)
was used since the random number generator supplied with Java was found
to have dependencies which affected the results.

11.1 The Order-2 algorithm applied to nonoverlapping sub-
functions

Our Order-2 Linkage Detection Algorithm, with sufficient CPU time as de-
scribed by the formulas of Theorem 9, can resolve the epistatic structure of
a function with any number of subfunctions2. To illustrate this, we ran the
Order-2 Linkage Detection algorithm with randomly generated background
strings on 800-bit functions with 160 order-5 nonoverlapping subfunctions.
Each subfunction was a linear function with a randomly placed needle. The
linkage graph of each subfunction is a complete graph on 5 vertices, and so the
linkage graph for the whole fitness function consists of 160 components, each
of which is a complete graph on 5 vertices.

The first formula of Theorem 9 says that 95 probes per potential linkage
graph edge are needed to achieve a 0.99 probability of detecting all edges of the
linkage graph, and 112 probes per edge are required to achieve 0.999 overall
success probability.

However, the algorithm can solve the linkage learning problem (for nonover-
lapping subfunctions) with considerably less probes per potential edge since
all edges do not need to be detected to identify the components of the true
linkage graph. This can be done by finding enough edges so that the compo-
nents of the discovered linkage graph are the same as the components of the
true linkage graph. This is illustrated by the results given below for the Order-
2 Linkage Detection Algorithm. The string length was 800, and a values less
than 10−10 was considered to be zero, and the 160 subfunctions were identi-
cally scaled. A run was considered successful only if all 160 components of the
linkage graph were successfully identified.

2As stated earlier even if the epistatic structure of a problem is completely determined the prob-
lem may, of course, remain NP-complete and hence intractable.
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Number of Number of function
probes per edge Runs Successes evaluations per run

15 200 164 19,176,000
20 200 197 25,568,000
30 200 200 38,352,000

The CPU time per run for 15 probes per edge was about 35 minutes on
a 2 GHz. Pentium c© 4, and double that for 30 probes/edge. The amount of
memory used was about 36 megabytes in either case (some of this was due to
data structures relating to checking whether the results were correct).

11.2 Overlapping subfunctions with backgrounds from a pop-
ulation

In this subsection we give empirical evidence that drawing background strings
from a population does not change the complexity results of Section 8.1.

The test function used in this subsection is an embedded landscape with 50
5-bit subfunctions and a string length of 50. Each subfunction is linear with a
randomly placed “needle”. A value is considered to be zero if it is less than
10−7.

The algorithm used is that given in Section 8. The algorithm is considered
to be successful only if it correctly finds all hyperedges of the hypergraph. On
smaller examples, when the algorithm finds all hyperedges, it correctly com-
putes all Walsh coefficients. When the algorithm fails (on this class of func-
tions), it is most likely to fail when doing the order-2 probes. Thus, the formula
of Theorem 9 should be applied with j = 2 and k = 5. The number of order-2
hyperedges is at most 50

(

5
2

)

= 500 since there are
(

5
2

)

order-2 hyperedges per
subfunction. However, some of these overlap, and the actual number is about
420.

The algorithm of Section 8 was run for 1000 trials for each ofN = 40, 50, 60, 70,
80, 90, whereN is the number of probes per potential hyperedge. (i. e.,N is the
population size.) The algorithm was also run with the same parameters using
randomly chosen backgrounds instead of backgrounds from a population. In
addition, the first equation of Theorem 9 was solved for the success rate for the
same values of N and with j = 2, k = 5, and J = 420. These are shown in
the table on the left below. The table on the right shows the average number of
function evaluations for these experiments.

These results suggest that when f is an embedded landscape with the num-
ber of subfunctions being O(L), then the complexity is given by the formula of
Theorem 9 even though populations were taken from a population rather than
being randomly generated. Further theory and/or experiments are needed to
confirm this hypothesis.
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Accuracy
N Theory Population Random
40 0.1331 0.222 0.168
50 0.5889 0.658 0.648
60 0.8700 0.891 0.888
70 0.9640 0.963 0.967
80 0.9904 0.992 0.992
90 0.9975 1.00 0.995

Function Evaluations
N Population Random
40 69008 279526
50 85889 345577
60 102547 411381
70 119241 490876
80 135907 540427
90 152501 604383

11.3 Solving some large problems

When the algorithm of Section 8 is run with function evaluation caching, mem-
ory size can be a limiting factor. To conserve memory, it is important that a bit-
string encoding be used for background strings. On Intel 32-bit hardware, the
maximum amount of memory that we could get from the Java virtual machine
was about 1900 megabytes.

Under these limitations, the algorithm of Section 8 was able to find the
structure of randomly generated 1000 bit 3-MAXSAT problems with 4300 clauses
8 times out of 10 using 24 trials per order-1 probe, 13 trials for order-2 probes,
and 7 trials for higher order probes. The run time was about 2.4 hours per in-
stance on a 2 GHz. machine, and the number of function evaluations 6,420,000
± 2000.

Functions with randomly generated subfunctions are much easier. The al-
gorithm of Section 8 was able to find the structure of 1200 bit problems with 150
randomly generated nonoverlapping subfunctions 100 times out of 100. The
number of trials per probe was 12, 8, 6, 4, 3, 2, 2, 2 for order 1, 2, 3, . . . , 8 probes
respectively. The number of function evaluations per instance was 5,768,258,
and the time was about an hour per instance on a 3 GHz. Pentium c© 4.

12 Conclusions

The strength of the perturbational approach used in this paper is that a probe
gives unambiguous information about the interaction of the variables involved
in the probe that is not contaminated by noise from the interaction of other
variables. Thus, probes can detect weak interactions between variables even
when there are strong interactions between other variables. On the other hand,
a probe only gives information on the relationship between those variables
involved in the probe, and if there are many potential variable relationships to
be tested, this means that many probes must be done.

This can be contrasted to methods that use either a random population or
a population that results from executing some stages of an evolutionary com-
putation algorithm. These methods are essentially using random or semiran-
dom sampling to estimate the interaction effects of variables. Now the interac-
tion effect of a specific collection of variables (the signal) is mixed up with the
interaction effects of other variables (the noise), and a large population may
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be needed to pick up the needed signal from the noise. Furthermore, when
there are overlapping blocks, it may be very difficult to characterize this noise,
and this makes it very difficult to give rigorous complexity bounds for this ap-
proach. However, these methods fit naturally into a population-based frame-
work for optimization, and thus it is more evident how to combine a sampling-
based linkage discovery with a sampling-based optimization.

This paper uses a very strict definition of what it means to successfully
solve the linkage discovery problem. We say that the problem is solved only
if all of the relevant hyperedges of the linkage hypergraph are successfully de-
tected. Many papers (such as (Pelikan et al., 2000; Harik et al., 1999; Munetomo
and Goldberg, 1999b)) on linkage use a weaker definition of a successful solu-
tion: A successful solution finds some fixed percentage of the blocks. Thus, as
the problem size grows, there will be an increasing number of blocks that are
not successfully detected. Further, in order to find a block where blocks are
nonoverlapping, the algorithms in this paper only need to find enough edges
in the linkage hypergraph to connect all of the vertices corresponding to that
block.

There are two contributions of this paper. First, the paper gives a rigor-
ous mathematical foundation for perturbational methods for determining the
epistatic structure of a function from binary strings to the real numbers. These
methods are closely related to the Walsh basis representation of the function.

Second, the paper gives two new randomized algorithms to solve the prob-
lem of detecting linkage (finding the components of nonlinearity) of a fitness
function from fixed length binary strings to the reals. Both algorithms work
as well on fitness functions with overlapping subfunctions (blocks) as they do
on nonoverlapping subfunctions. The first algorithm generalizes the LINC al-
gorithm of (Munetomo and Goldberg, 1999b) and (Munetomo and Goldberg,
1999a) to finding epistasis of arbitrary order. The primary parameter in the
algorithm is the number of probes. If the function has k-bounded epistasis (is
k-delineable in the terminology of (Munetomo and Goldberg, 1999a)), then rig-
orous bounds can be given for the number of probes that are needed, and this
leads to a complexity analysis of the algorithm. The second algorithm gener-
alizes the algorithms of (Kargupta and Park, 2001). This algorithm both de-
termines the epistatic structure and finds the Walsh coefficients of a k-epistatic
function. It is more practical when most of the Walsh coefficients of order less
than k are zero. This algorithm is more efficient than the methods of (Kargupta
and Park, 2001). A rigorous complexity analysis is given when the number of
subfunctions grows linearly with the string length.

More research is needed in applying this class of algorithms to functions
where the assumptions of k-bounded epistasis and sparseness of the Walsh
basis representation are only approximately satisfied. Further research is also
needed in understanding how these results can by used by genetic algorithms
and estimation of distribution algorithms to take advantage of the epistatic
structure of functions.
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