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Abstract. This paperassumes searchspaceof fixed-lengthstrings,wherethe

size of the alphabetcan vary from positionto position. Structuralcrosseer is

mask-base crosseer, andthusincludesn-point and uniform crosseer. Struc-
tural mutationis mutationthat commueswith a group operationon the search
spaceThis papershaws that structuralcross@er and mutationprojectnaturally
ontocompding familiesof schemataln otherwords,the effect of crosseerand
mutationon a setof string positionscan be specifiedby consideing only what
happensat thosepositionsandignoring otherpositions. However, it is not possi-
ble to do this for proportioral selectionexceptwhenfitnessis constanton each
schemaof the family. One canwrite down an equationwhich includesselection
which generalizeshe Holland Schemaheorem However, like the Schemathe-

orem, this equationcannotbe appliedover multiple time stepswithout keeping
trackof thefrequeng of every stringin the searchspace.

1 Intr oduction

This pape describeghe remakable propertiesof structuralcrosseer and mutatian
with respectto families of competing schemataRecallthat a schemadefinescertain
compamentsastakingonfixedvalueswhile theremainng compmentsarefreeto vary.
Two schematarein the samefamily if they specifyfixed valuesfor the sameset of
compaments.They arecompetingif they specifydifferentvaluesat thesecommnents.
Givena setof commnentsthe setof all possiblefixed valuesthat canbe assignedo
themgives usawhole competimg family of schemata.

[VoseandWright, 2001 shavedthateachschemacorrespondgo a vecta in pop
ulation space.Theseschemavectas make up the compnentsof a genealized (and
redurdant) coordnate systemfor population space.As the geneticalgorithm moves
from pointto poirnt in popuation spacejt might be saidto “process” schematan the
senseahateachpointin populationspaceadeterminsthefrequeng of eachschemaThis
processingof mary schematdastraditiorally beencalled“implicit parallelism”.How-
ever, the compmentscorrespading to nontrvial schematdamiliesare not indepen
dently processedndthusary implicationthat the geneticalgorithmgainsproessing
leverage dueto theproessingof schematds misguided

The setof comnentscorrespndingto a competig family of schematanay be
picked out by a binary mask,andwe canview sucha maskasbeinga projection onto



a smallersearchspace(in which we ignorewhathapgensat the otherpositions).The
remarlable resultthatwe will prove is that structuralcrosseer and mutationproject
naturallyontothesefamilies. Thatis, we canspecifythe effed of crosseer and mu-
tation just on the setof positiors under considration,ignaring whathappes at other
positions Becausehis resultappliesto all schematdamiliessimultaneosaly, we dubit
the“Implicit ParallelismTheoren”. In doingso,we hopeto eradicatehe previous us-
ageof thisphrase(whichdid notapplyto atheoematall, butto afundamentamistale)
andrescudt for amore suitableusage.

The resultthat operatos prgect naturdly onto schematdamiliesappliesonly to
cross@erandmutation It wouldbeniceif it alsoapgied to selectionandthis possibil-
ity is investigatedThe conclusim, however, is thatit canrot (exceptin thetrivial case
wherefitnessis a constanfor eachscheman a schemaamily). Onecan,of course,
write down an equatia which involves selection,aswell ascrosseer and mutation
This equationis, in fact,moreelegant andmeanimgful thanHolland’s original Schema
Theoem,but it suffersfrom the samefundamentalflaw. In order to computethe aver
agefitnessof a schemaat a givengeneratia, oneneedso know all the detailsof the
entirepopulationatthatgeneation.It is therebreimpossiblgo projectontoaschemata
family andignore whathappensatthe othercomponens. Oneimplicationof thisis that
onecannotiteratethe equatia: like the Schemarheaem, it canbe appliedover more
thanonetime-steponly by keepingtrack of the frequeng of evely stringin thesearch
space.

2 Structural search spacesand operators

We generaliz§Vose, 1999 by introdwcing a classof geneticopeatorsassociatedvith
a certainsubgraip structue (for more details,see[Rowe etal., 2003). Suppsethe
searctspacdormsagroup ({2, ®) which hasnontivial subgraipsAyg, ..., A¢_1 such
thatfor all 4, j, z,

1. 2=Ai®...® A1
2.i#£) = AiﬂA]’:{O}
3.29A, =A;x

Then {2 is the internal direct sumof the 4; (which arenormd subgraipsof (2) and
eachelementz € (2 hasauniquerepesentatiorr = g ® ... ® x,_1 Wherex; € A;.
Themap
T — {(To,.-.,Tp—1)
isanisomorghismbetween? andtheproductgroup A x...x 4,1 (seglLang, 1993]),
where
(o, ..o e 1) ® (Yo,-- - Ye—1) = {To DYo,---,Te—1 D ye 1)
and
®<$05 s 5‘776—1) = <9.’L'0, LN exf—l)
(whereo indicatesthe inverse of an element).In this casethe searchspaceis called

structural. Assumefor the remainear of this paperthat (2 is structural,and identify
x € 2 with <.’L‘0, e ,.’L‘g_l).



As anexanple, consideralength/ stringrepesentationvherethe cardirality of the
alphatet at stringpositionj is c;. Thealphéetat positionj canbeidentifiedwith 2,
(theintegers modulo ¢;), andthe @ operato canbe compmentwiseaddition(modulo
¢; atpositiony). Then{? is isomorghic to thedirectproduct Z., x ... x Z,,_,. This
exampe extends the situationconsideed in [Koehleretal., 1997 wherecy = ¢; =

- = ¢4—1. The standardexanple of fixedlengthbinary stringsis a specialcasein
whichc¢; = 2 for all positiors j.

A conceteexampleof theaboveis: £ = 2, ¢o = 3, ¢; = 2, so (2 isisomorplic to
Z3 X Z5. Whenwe write elementof 2 asstrings,the standad practiceof putting the
leastsignificantbit to theright is followed Thus,

2 = {00,01,10,11,20,21} = {0,1,2, 3,4, 5}

The groy opeatorworks by applying additionmodulo3 to the left bit, andadditian
moduo 2 to theright bit. For exanple

21911 =00

Theelement0 is theidentity.
ThesetB of binary maskscorrespadingto 2 is

B = {<b0,...,b[71> :b; € 22}

where Z, is the set of integers modulo 2. Note that B is an Abelian groy under
compament-wiseadditionmodulo?2. It is notatically corveniert to let & alsoderote
the growp operdion on B; hence® is polymorpic.# Let ® denotecompment-wise
multiplication on B, andlet 1 € B betheidentity elemenffor ®. Forb € B, defineb by

b=1b

It is notationdly convenientto exterd ® to acommuative opeatoractingalsobetween
elementd € B andelements € (2 by

<b0, ce, bg_l) ® (.’L‘O, . ,.Z'g_l) = (bo.’l]o, .. .,bg_1$4_1>

where0z; = 0 € 2 andlz; = z; € (2. Heretheright handsidesareelementf (2;
henceg is polymorphc.
It is easyto checkthatfor all z,y € 2 andu,v € B

r=zQ1
1=udu
O=udu
O=u®u

oy @u=(z0u)®(yQu)
zoue(yea) =(yoa) ® (reu)
zu)ev=1r8 (ux )
ou®r) =u® (o)

4 An operatotis polymarphic whenits definitiondepend uponthetype of its aguments.



To simplify notation ® takesprecedeceover @ by convention.If b € B is amaskthen
#b derotesthenumler of onesit contains.
Let x beaprobaility distribution overthesetof binarymasks,

Xp = theprabability of maskb

Structul crosswer with distribution X apgied to parerts v and v correspndsto
choasing binaly maskb with probability X; andthenproducingtheoffspingu ® b &
b ® v. Theprabability thatparentsu, v € 2 have child & is therefae

r(u,v, k) zsz[uéi)b ®bRv=Ek|
beB

Thecorrespondiry crosseer scheme is alsocalledstructual andsatisfies
Xy + X3

CP =Y pupsy ~5lu®b @ bov =4

beB

wherep € R is a distribution over the searchspacef?. Thatis, p is a popuation
vectorin which p;, is the proportion of the popuation madeup of copiesof element
k. C(p) givesthe expeded distribution afterthe application of crosseer. For exampe,
for uniform crosseer with crosswer rateu, the probability distribution X is given by
Xo =1—u+u/2¢andx;, = u/2¢ forb # 0.

Let i bea prabability distribution over (2,

i = theprobaility of k

Structual mutationwith distribution p appliedto v € (2 corresponddo choasing k
with prokability u, andthenproducingtheresulty & k. The probability thatv mutates
tou is therebre

Uu,v = Uoveu
The correspading mutationschemé/ is alsocalledstructurall{(p) = Up givesthe
effect of apdying mutationto popuation vectorp € R/,

3 Masksasprojections

This sectiongenealizes[VoseandWright, 200L]. Assume? is structugl, crosseer is
structuralandmutatian is structual. Eachbinaly maskb hasassociatedubgraip

2= 1

Themap
rTH—bQx

is a homomorghismfrom (2 to 2, sinceb® (r @ y) = bz ® b® y. Thekernel
is thenomal subgraip £2;, and,therebre, thefollowing mapfrom theimage(?, to the
quotien grow 2/ 25 is anisomophism[Lang, 199],

2=20br— (D2



Thequdientgroup 2/2; = {{ @ z : z € {2}, beingcomprisedof disjointschemata,
is referedto asthe schemafamily corresporling to b, andschemaf?; & z is referrel
to asthe schemacorresponéhg to z € (2;.

Forb € B, defined, as

Ay = {p ER™ :ipp >0, pr= 1}
Thelinearopeator =, : RI¥?/ — R/ with matrix

(Zp)i; =1 ®@b=1]

is calledtheopermator associateavith the schemafamily corresponihg to b; it hasrows
indexed by elementof (2, andcolumrs indexed by (2. Noticethat =,(A) C A,. To
simplify notation, we will refersimplyto = whenthebinary maskbd is undestood.

For the exampleof thefixed lengthstring repesentatiorwherel? is isomorgic to
Z3 X Zo, forb = 10,

(1100007
Eio=1(001100
1000011
andfor b = 01, ) )
- _J101010
“0 T 010101
Notethat

Y (Epi=) Y liob=ilp

i i€y j

:ij Y li®b=1i]

1€y

=> p
7

Henceif p € A is a probaility vecta, then=p € A, is a prokability vector As the
following computationshaws, thei th compaentof Zp is simply the proportion of the
popuation p whichis containedn theschema?; & ¢ which correspndsto ¢ € (2;,

(Ep)i=) [i®b=ilp
J
=Y [iebojeb=jebailp,
]
=N li=ji®bail;
J

<Y i€ @il
J



Corversely, giveni € (2,

dlehaip <) bejcbefebil,
- .

= Z[j@)b: ilp;

The matrix = therefage projeds from the distribution over all possiblestringsto
a distribution over a family of competing schemataFor exanple, using traditional
schemanotatian, we couldwrite:
Z10(Poo, Po1, P10, P11,P20,P21) = (Po+, D1+, P2 %)

and
Z01(Po0; Pot1, P10, P11,P20,P21) = (Px0,Px1)

Let B, = b® B. It is notationdly corvenientto make =, polymorphc by exterding
it to alsoreplesenthelinearmap =, : Rl — RIB:| with matrix

(Zp)ij = ®b=1]

Heretherows areindexed by elemeits of B, andcolumrs areindexedby B. Again, we
will dropthesubscriptandrefersimplyto = whenthemaskis understod.

For the exampleof thefixedlengthstringrepesentatiorwheres? is isomorghic to
Z3 X Z,, thesetof maskss B = {00,01,10,11}. Forb = 10,

1100
0=10011|"

1010
0101]"

% i€EBy J

=Yz Yy [i®b=i

J i€EBy

=2
j

Henceif 2 € R'B! is aprobaliity vecta, then=2z € R'B| is a probability vector

n

andfor b = 01,

[

01

Notethat

4 Theimplicit parallelism theorem

Giventhatf2 = Ag & - - - ® A,_q is structural (2, is alsostructurd

‘Qb :Ako @...@Ak#b_l



where{ko, ..., kxp—1} = {i : b = 1}. Moreover, 4, is preciselythe A previously
definedas correspondimg to the searchspace|f the searchspaceis chosento be (25.

Likewise, By is preciselythe B previously definedascorresponihg to thesearctspace,
if thesearchspaceas chasento be 2. Therebre,since=x and=u areprobability vec-
torsindexedby B, and (2, (respectiely), they have correspnding structuralcrosseer

andmutationschemeg’;, andi{, which repesentcrosseer andmutationon the state
spaced;.

Theorem1. If M =U oC,thenEM(z) = Up o Cp(Zx)
Prod Let My = Uy o Cp. Thek th commnentof E M (z) is

z M(@)p = z M(z) ko

K €25@k k€25

Z Z Tudu Lo’ Z Mu@u’@k@k’,v@v’@kek’

u,vE u W €Ny k'e2y

Z Z Tudk®u’ Z Todkdv' z Muek waw ouw ok

u,vESp u' €% v' €25 k'€ 2y

Theinnernostsumabore is
D D D D D e
k'ef2y i€y i€y jEBy jEQBy
GeiYowok)e((aj)o(aj)ewar ou ok')=70]

Notethattheindicata function above is equivalentto

XJ@] + X

[('ekejeo®aei)e@edok)=0icuxje(daj)v=0]

Thefirst factoraboreis equivalertto [i’ @ (b®j') ® (v' ©u') = k'] whichdeteminesk’.
This is mosteasilyseenby chaosingthe searchspaceto be (23, in which casethefirst
factoris anexpressionover the searchspaceandits binatly masksandb is theidentity
elementfor ®; in thatcontext (b @ j') is j' andthefirst factorbecome
['okejoje@eouok)=0

[df ek’®g oje@Wou)oj ok =0]
[ifej'e@Wou)okeji ol @k =0
[i' ®
[if

® @ ou)ok =0
@g ® (W eu)=1F

It follows thatthesumaboveis

Y D lisuvjede)ov=0 ) per ). w

1€y JEB i€y J'€ERBy
ZX); + (EX)5
=Y Z[i@u@j@(b@j)@vzo](a})i#

i€, JEBy
= (Mb)u,v



WhereM,, is the mixing matrixfor M. Therefore,the The kth compnentof Z M (x)
is

Z (Mb)u,v Z Tudkdu’ Z Tydkdv'

U,vEN u' €82 v' €Ny
= Y (Mp)up(Ex)uek(Ex)van
u,vES
= My(Ex)y,

O
Cordllary 1 (Implicit Parallelism).
M=UoC = EM=MyoZ whee My =U, oCy
M=Coll = EM = MyoZE whee My =Cpy ol
In particular, =Y = Uy o Zand=C = Cp o0 =.

Prodf Thefirstimplicationis theoreml. A specialcaseis C = Z, in which casethe
conclwsionis
EU(z) = Up(Ex)

Anothe specialcases i = Z, in which casethe corclusionis
EC(z) = Cp(Ex)
Consequatly,
EColU=ChoEold =Cholpo =
O
Corollary 1 speakgo schematahroughtheisomorghism (2, = 2/(2; given by

r— (D

Therebre, M, represets mixing (i.e., crosseer and mutatior) on a searchspaceof
schematdi.e.,theschemdamily 2/2;).

A consegenceof corollary 1 is that, indepenlent of the order of crosseer and
mutation the following commutéive diagram holds,in parallel, for every chaice of
schemafamily, simultaneasly

| ls

Er —— s My(Ex)

[

Becausehis resultdoesspeakto parallelismandschemata—syécts which implicit
parallelismhasclassicallydealtwith—Vose(1999) hasreddined the phrase‘implicit



parallelism”to referto it.> This useof the term conflictswith that emplo/ed by GA
practitiorers(for examge in [Holland, 1975Goldbeg, 1989]). To the extert “implicit
parallelism”hastraditiorally indicatedthat somekind of “processingleverage”is en-
joyedby GAs, traditional usagehasbheemmisguided geneticalgorithmsexhibit nosuch
behaiour, nor canthetheorens of Hollandestablishsucharesult.Becauseorollary 1
doesaddessexactly what happes within all schemaamilies,in parallel,simultane-
ously it is proposedasanappr@riatealternatve to take overthe“Implicit Parallelism”
label,in thehopethatthe misguidedandincorred traditionalnotionbe eradicated.

Example

Let us corsiderthe implicit parallelismof mutationon the exanple 2 = Z3 x Z,.
Firstly, let usdefineour mutationoperato by the prabability distribution:

_fo09 ifj=00
P35 =1 0.02 otherwise

Thatis, thereis aprobalility of 0.9thatnomutationwill take place.Otherwisewe pick
anelement; € 2 atrandon (uniformly) andapplyit to our curren individual. Now
suppaethatwe areinterestedn whathapgensin thefirst compnent.Thatis, we are
concenedwith theeffectof mutatian onthefamily of schematd x, 1 x, 2 x. Onewayto
calculatethis would beto work out the effect of mutation onthewhole popuation and
thensumuptheresultsfor eachscheman thefamily. Theimplicit parallelismtheoem
tells usthatwe dorit needto do this. Insteadwe canfind a mutationopertorthatacts
onthefamily of schematitself, andhasthe exactequialenteffect.
For aconceteexampe, corsiderthe populationvecta

P = (Poo, Po1, P10, P11, P20,P21) = (0.1,0.2,0.1,0.2,0.25,0.15)

Ourfamily of schemat&orrespond to themaskb = 10. We have alreadyseerthatthis
givesusa matrix
110000
Z10=1001100
000011

Multiplying p by this matrix givesusthe distribution of the population over thefamily
of schemata:

Z10P = (Pox,P1s,P24+) = (0.3,0.3,0.4)

We now have to definea mutationoperdor for this redicedsearchspaceThisis given

by

So our mutationoperator actingon our family of schemataonsistsof picking an el-
ementof {0 x, 1,2} accordimg to the above protability distribution andapgying it
to the elementto be mutated Notice thatin this quotiert group the element0 x is the

5 ... in thebinary case This paperestablisheshe resultmoregenerally



identity. Constructilg the mutation opaatorthatactson A, from this distribution gives

us
0.92 0.04 0.04
T

Uro(z) = | 0.040.920.04
0.04 0.04 0.92

Soin our exampe, we calculatethe effect of mutatian on the family of schemataas

being
0.920.04 0.04 0.3 0.304
0.040.92 0.04 0.3| = (0304
0.040.04092( |04 0.392

Notice thatto make this calculationwe did not needto know the detailsof the pop
ulation p. We only neededo knov how mary elementswverein eachschemagiven
by Zp). We cancheckthis resultby working out the effect of mutation on the whole
popuation andthensummirg overthe schematal heimplicit parallelismtheorentells
usthatwewill getexadly thesameresult.

5 Implicit parallelism and fithess-basedselection

It would beespeciallyusefulif, in thecommuative diagamabove, M couldbegerer

alizedto G sotheeffectsof selectioncouldbeincomorated For proportioral selection
atleast,Vosehaspointedout the difficultiesinvolvedandconclidedthatsuchcommu

tativity is in generanot possibleglVose, 1999. In anattemptto force commuativity, a
selectionschemeF;, mightbedefinedonthequotier by

Fo(Ex) = EF(x)

Theprablemhereis thatF; is notwell defined theright hard sidemightdependnthe
particularz involvedeventhoud theleft handsidedoes not(i.e.,evenif =z doesnot).
In anattemptto ignore this comgication, onemight definea “fithessvector” f, (over

2) for which
diag(fs) ==

fb Sz

Sincethe complication cannd be ignored, the vecta f, mustdependon z. If f; is
definedas

Fo(Zx) =

fo = diag(5x) ™! = diag(f) =
then

fi Bz = 2(5 )i (= diag(f) 2); (5z);



Therebre, by way of notatimal sleightof hand

_ diag(fy) =z
Tz
_ diag(diag(Zz)~' = diag(f) z) ==z
= 72
_ Ediag(f)x
==
= EF(x)

]:1,(5113)

Of course,this definition for f; is preciselythe one givenin the “schematheoren”
[Holland, 1975]. Usingthis definition, onecoulddefine

Gy =MpoFp
andappal to implicit pardlelism to condude
EG(x) = EMoF(z) = Mpo E o F(z) = My o Fp(Ex) = Gy(ZEx)

thereby“exterding” implicit parallelismfrom M to G. Unlike Hollands result, the
relation=G(z) = Gy(Ex)

— is anequalitywhichin evely caseprovidesnornvaclousinformation,

— sayssomethimgy nortrivial aboutnew elementgproducedby mixing,

— makesexplicit the relationshig betweernthe geneticopeatorsandthe undetying
growp structue of thesearchspace.

However, it shouldbenotedthatbecase f;, deperson z, the“extersion”
EG(z) = Gy(Zx)

speakonly to whathapp@és over a singletime step(like Holland's result)andthein-
formation provided s insufiiciert to charactaee the next gereration(even in Ay). In
particular it cannd be usedto mapout popuation trajectoriesandit certainlycanrot
be usedto justify talk of “above averag fitnessbuilding blocks beirg selectedexpo-
nentially”. The “fithess” of schemataanna be well-defined(it is not an attribute of
schemate&z, but is deterninedinsteadby z). Thevariows claimsabou GAs thatare
traditiorally madeunder the nameof the building blodk hypotlesishave, to date,no
basisin theory and,in somecasesaresimply incoheent. Oneexceptia is whenthe
fithessfunctionis a constanfor eachschemaof aschemdamily (in which casethere-
mainingconstituets areredundant) Otherwise onemusttake account of the factthat
schematdfitnesses”aredynamicquantitiesthatchang from populationto population
(see[SteplensandWaelbroeck 1999 for sucha view of the building block hypothe-
sis). Moreover, the fithessof sucha “building block” at a given time depenls on the
entiremicroscic structureof the populationatthattime.



Example

Considetthe family of schematdx, 1x, 2% onthesearctspacef? = Z3 x 2. Letthe
fitnessvectorbe f = (foo0, fo1, f10, f11, f20, f21). Thenf, canbecalculatedas:

Joozoo+fo1T01
Z00+To01
f — | froziot+fuizn
b T10+2Z11
f20T20+fo1221
T20+Z21

We canverify that 7, (5z) = EF(x).

fooZoo+fo1zo1
Zoo+To1 0 0 Too + To1
Fo(Ez) = 0 Joziot/uzy 0 z10 + 211 | = 5F(x)
fao0z20+fo1221 Tog + -
0 0 v 20 21

Noticethatthefitnessof aschemalepenlsonthedetailsof thewhole populationz
andnotjustonthecorrespadingschematdamily.

6 Conclusions

This paperhasdevelopeda framevork for the theol of geneticalgorithns thatusea
fixed{engthstringrepresentatiowherethecardirality of thealphabetteachstringpo-
sitionis arbitray. Structurakcross@er andmutation represetthenatual waysto define
cross@er andmutatian in this framewvork. An implicit paralllelismis proved.This the-
oremstateshatstructuralcross@er andmutatian prgect naturallyontoall competiny
familiesof schemataThis kind of projectiondoesnot work for proportioral selection
excep whenfitnessis constanbn eachschemaof thefamily. An exactequationwhich
genealizesthe Holland Schemaheoren canbe proved, but like the Holland Schema
theoremit canrot beappliedin realisticsituationsfor morethanonetime step.
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