
Efficient Linkage Discovery by Limited Probing

Robert B. Heckendorn1 and Alden H. Wright2

1 University of Idaho, Moscow, ID 83844-1010 USA, heckendo@cs.uidaho.edu,
2 Computer Science, University of Montana, Missoula, MT USA, wright@cs.umt.edu

Abstract. This paper addresses the problem of determining the epistatic link-
age of a function from binary strings to the reals. There is a close relationship
between the Walsh coefficients of the function and “probes” (or perturbations)
of the function. This relationship leads to two linkage detection algorithms that
generalize earlier algorithms of the same type. A rigorous complexity analysis is
given of the first algorithm. The second algorithm not only detects the epistatic
linkage, but also computes all of the Walsh coefficients. This algorithm is much
more efficient than previous algorithms for the same purpose.

1 Introduction

In very simple fitness functions each bit in the domain independently contributes to
the total value of the function. In optimizing these simple fitness functions, each bit
can be tested independently against a fixed background of other bits to determine the
contribution of that bit. Proceeding through all the bits the optimum can be found in
linear time with respect to the number of bits.

Most practical functions, however, are not nearly as simple. For many, the contribu-
tion of a bit in the domain to the function value is non-linear in that it is dependent on
the state of one or more other bits in the domain. This linkage effect is called epistasis
and can be succinctly defined:

“...if the effect of one unit is not predictable unless the value of another unit
is known, then the effects are epistatic...in other words, the effect of a unit is
context dependent” [Bro00].

Applied to the case of evolutionary computation the “units” in the quote above refer to
the positions in the problem representation whose values are selected from an alphabet.
The more units, or positions, that simultaneously interact (the higher the epistasis) the
greater the degree of freedom to “hide” the optimum anywhere in the subdomain formed
by the interacting units [HW99]. High epistasis, however, is no guarantee of a diffi-
cult problem. Nor is low epistasis a guarantee of an easy problem. In fact, MAX3SAT
problems are equivalent to problems of low epistasis in which all epistatic interactions
are known and they are provably NP-complete [Hec99]. Still, knowing the location of
epistatically interacting blocks of bits may be used to guide a search for the optimum or
the formulation of a representation [MG99b,MG99a,KP01]. If the function is separable,
each component can be solved separately. If the function is close to separable, this can
guide the choice of crossover operators. In this case, Mühlenbein and Mahnig [MM99]
also suggest applying the UMDA algorithm where each component makes up a string

2

position with a higher-order alphabet. Mühlenbein, Mahnig, and Rodriguez [MMR99]
give a factorized distribution algorithm (FDA) that applies to additively decomposed
functions (that we call embedded landscapes in this paper).

The general problem of discovering epistatic linkage has been addressed directly
and indirectly by many papers. Munetomo and Goldberg showed a simple direct pertur-
bational approach to generalized linkage discovery over a binary alphabet in [MG99b]
[MG99a]. These papers also summarize some other approaches to the problem. Kar-
gupta et al. [KP01] have shown that for epistatically bounded functions, f , where the
epistasis is known to be bounded by k bits, all the Walsh coefficients, a direct measure
of the magnitude of epistasis, can be computed in time O(Lk), where L is the length of
the representation.

In this paper we present a theoretical framework for the detection of epistatic link-
age and the computation of Walsh coefficients for epistatically bounded functions. The
Walsh coefficients completely describe the function and so completely characterize the
epistatic linkage. The algorithms in this paper are blackbox algorithms in that they
assume minimal prior knowledge of the function being analyzed. This paper deals with
perturbation methods, or what we call probes. We give a randomized algorithm for
linkage detection which is based on our theoretical framework, and we give rigorous
complexity bounds for this algorithm. We extend this to another randomized algorithm
that both detects linkage and computes the Walsh coefficients. This algorithm makes
much more efficient use of function evaluations than previous algorithms.

2 Notation

The space of all bit strings of length L is denoted by B . The binary operators on B
include ∧ which denotes bitwise AND, and ⊕ which denotes bitwise EXCLUSIVE-OR.
An overbar (e. g., m) denotes 1’s complement. Since the L-bit binary representations
of the integers in the interval [0, 2L) coincide with the elements of B , a bit strings may
be denoted by the corresponding integer. For example, the integer 2k, 0 ≤ k < L
corresponds to the bit string with a single one in position k, where bit positions are
labeled from the right starting at 0. Thus, 22 ≡ 0000100 for L = 7. It is convenient
to think of a bit string i as corresponding to the set of bit positions indicated by the 1
bits in i. Thus, we write i ⊆ j (i is contained in j) when the set corresponding to i is
contained in the set corresponding to j, i. e., when i ∧ j = i. If i ⊆ j and i 6= j we
write i ⊂ j. The unitation or bit count function bc(i) of string i is the number of ones
in i. Given a mask m ∈ B , let the set Bm = {i ∈ B : i ⊆ m}. Note |Bm| = 2bc(m).
Square brackets are used to denote an indicator function: if expr is an expression that
may be true or false, then

[expr] =

{

1 if expr is true

0 otherwise

3

3 Walsh Analysis and Embedded Landscapes

Any function f : B→R can be written as a linear combination of Walsh functions:

f(x) =
∑

i∈B

wiψi(x)

where ith Walsh function is defined:

ψi(x) = (−1)bc(i∧x)

and the wi are referred to as Walsh coefficients. The Walsh transform is a linear
transform of the Walsh coefficients represented as a vector w in R

2L

to the function
space f in R

2L

. This is a change of basis transformation corresponding to the matrix Ψ
with Ψi,j = ψi(j).

f = Ψw and w =
1

2L
Ψf (1)

It is not hard to show that Ψ is symmetric and ΨΨ = 2LI where I is the identity matrix.
f depends on a bit position k, 0 ≤ k < L, if there exists a j ∈ B such that

f(j) 6= f(j⊕ 2K). In other words, f depends on bit position k if flipping bit k changes
the value assigned to some string j. The support of f is the set of loci that f depends
on. The support mask of f is a bitstring in B with 1 bits in exactly and only those
positions that support f . By the definition the support mask of ψi is i.

An embedded landscape is a function f : B→R which can be written in the form
f =

∑

gj where each subfunction gj has a support mask mj . Normally, there will be
some restriction on the support set masks mj . The function f : B→R has k-bounded
epistasis if it can be written as the sum of subfunctions each of whose support is a set
of at most k bits. It has been shown, perhaps most recently in [Hec02]:

Theorem 1. (Embedded Landscape Theorem) A function f : B→R has k-bounded
epistasis if and only if wj = 0 ∀ bc(j) > k

Thus, f has k-bounded epistasis if and only if all of its Walsh coefficients of order
greater than k are zero. The function f is linear if it has 1-bounded epistasis. The func-
tion f is additively separable if it can be written as a sum of at least two subfunctions
where the supports of all subfunctions are pairwise disjoint.

4 Probes

A probe is a way of determining epistatic properties of a function f : B→R by per-
forming a series of specific function evaluations. More specifically, a probe is:

P (f,m, c) =
1

2bc(m)

∑

i∈Bm

(−1)bc(i)f(i⊕ c)

where m ∈ B and c ∈ Bm. c is called the background of the probe. The order of the
probe is number of ones in the mask, or bc(m). The direct computation of the value of
a probe requires 2bc(m) function evaluations.

4

Theorem 2. (Walsh Function Probing) For any j,m ∈ B and c ∈ Bm ,

P (ψj ,m, c) =

{

ψj(c) if m ⊆ j

0 otherwise

Proof.

P (ψj ,m, c) =
1

2bc(m)

∑

i∈Bm

(−1)bc(i)ψj(i⊕ c)

=
1

2bc(m)

∑

i∈Bm

ψ1(i)ψj(i⊕ c)

=
1

2bc(m)

∑

i∈Bm

ψ1(i)ψj(i)ψj(c)

=
1

2bc(m)
ψj(c)

∑

i∈Bm

ψj(i)

By the Balanced Sum Theorem for Hyperplanes [HW99] the sum is 2bc(m) if j ⊆ m
which is the same as m ⊆ j and is 0 otherwise. ut

A probe is really probing for nonzero Walsh coefficients by adding and subtracting
over a set of Walsh coefficients. If the result is nonzero then one of the component
Walsh coefficients is nonzero. If it is zero then without further information we can say
very little. The following theorem identifies the set of Walsh coefficients.

Theorem 3. (Probe Subset) For any m ∈ B and c ∈ Bm,

P (f,m, c) =
∑

j∈B

[m ⊆ j]wjψj(c)

Proof. Recall that f =
∑

j∈B wjψj . Thus,

P (f,m, c) =
∑

j∈B

wjP (ψj ,m, c)

=
∑

j∈B

[m ⊆ j]wjψj(c) by the Walsh Function Probing theorem

ut

A maximal nonzero Walsh coefficient is a Walsh coefficientwm such thatwm 6= 0
and wj = 0 ∀ j ⊃ m.

Corollary 1. (Maximal Probe) If wm is a maximal nonzero Walsh coefficient, then for
any c ∈ Bm,

P (f,m, c) = wm

5

Proof. It follows from theorem 3 that

P (f,m, c) = wmψm(c)

And from the definition of a Walsh function: ψm(c) = (−1)bc(m∧c) = (−1)0 = 1.
ut

A probe can be written as a sum of lower-order probes.

Theorem 4. (Probe Recursion) For any function f : B → R, any masks m,n ∈ B
with n ⊆ m, and any c ∈ Bm:

P (f,m, c) =
1

2bc(n)

∑

i∈Bn

(−1)bc(i)P (f,m⊕ n, i⊕ c)

Proof. Any j ∈ Bm can be written uniquely as j = i⊕u where i ∈ Bn and u ∈ Bm⊕n.
Thus:

P (f,m, c) =
1

2bc(m)

∑

j∈Bm

(−1)bc(j)f(j ⊕ c)

=
1

2bc(n)

∑

i∈Bn

(−1)bc(i) 1

2bc(m⊕n)

∑

u∈Bm⊕n

(−1)bc(u)f(u⊕ i⊕ c)

=
1

2bc(n)

∑

i∈Bn

(−1)bc(i)P (f,m⊕ n, i⊕ c)

ut
Theorem 5. (Nonzero Probe Existence) Given a maximal nonzero Walsh coefficient
wm, for all a: a ⊆ m, there exists an i ∈ Bm⊕a such that

P (f, a, i⊕ c) 6= 0 ∀c ∈ Bm

Proof. By the Maximal Probe Corollary, P (f,m, c) = wm 6= 0 for any c ∈ Bm. By
the Probe Recursion Theorem applied with n = m⊕ a,

P (f,m, c) =
1

2bc(n)

∑

i∈Bn

(−1)bc(i)P (f,m⊕ n, i⊕ c)

Thus, there must exist an i ∈ Bn such that P (f,m⊕n, i⊕ c) = P (f, a, i⊕ c) 6= 0. ut

5 The Linkage Graph and Hypergraph

A hypergraph is a collection of vertices V together with a family of subsets E of V
called hyperedges where each hyperedge is nonempty. The set of vertices of the linkage
hypergraph is the set of string positions j. A set of vertices corresponding to mask
m 6= 0 is a hyperedge if there is a c ∈ Bm such that P (f,m, c) 6= 0. A hyperedge will
be identified with the corresponding mask. The order of a hyperedge is the number of
ones in the mask. In view of Theorem 5, the mask m is a hyperedge if and only if there
is a j ⊇ m such that wj 6= 0. Thus, we have the following corollary.

6

Corollary 2. If m is a hyperedge of the hypergraph, and if a ⊆ m, then a is also a
hyperedge.

DETECT-LINKAGE(j,N)
begin

V ← {0, 1, . . . , L− 1}
E ← ∅
for i← 1 to N do

for each mask m with bc(m) = j do
if m /∈ E then

c← a random string in Bm

if P (f,m, c) 6= 0 then
E ← E ∪ {m}

end if
end if

end for
end for
return E

end DETECT-LINKAGE

The order-j linkage detection algorithm constructs the set of order-j hyperedges of
the linkage hypergraph. The order-2 version of this algorithm is similar to the LINC
algorithm of [MG99b]. However, they start with a population of strings. Then each
probe is done using one of the strings of the population to provide the background for
the probe.

For an arbitrary function f it is impossible to conclude anything conclusively from
evaluating f at a subset of points. For example, if f would be k-epistatically bounded
except for its value at one point, then the above algorithm for j > k will return 0 for any
probe unless the probe happens to sample the one exceptional point. For a large string
length, the probability that this one exceptional point is sampled can be very small.

Thus, assumptions on f are needed in order to use the order-j linkage detection al-
gorithm to make conclusions. The natural assumption is that f is k-epistatically bounded.
The following theorems give a worst-case complexity analysis of the order-j linkage
detection algorithm in this case.

Theorem 6. (Nonzero Probe Probability) Let f be k-epistatically bounded and let m
be a mask corresponding to an order-j hyperedge of the linkage hypergraph of f . If c
is a randomly chosen string in Bm, then the probability that P (f,m, c) 6= 0 is at least
2j−k.

Proof. Since m is a hyperedge by the Nonzero Probe Existence Theorem there is a u
such that m ⊆ u and wu 6= 0. Without loss of generality we can assume that u has the
property that u ⊂ v ⇒ wv = 0. By assumption, bc(u) ≤ k. Theorem 5 shows that there
is at least one i ∈ Bu⊕m such that P (f,m, i ⊕ b) 6= 0 for any b ∈ Bu. The probability
that the randomly selected background c matches some such i on the positions masked
by u⊕m is at least 2−bc(u⊕m) = 2bc(m)−bc(u) ≥ 2j−k. ut

7

The lower bound of Theorem 6 cannot be improved under these assumptions. Start
with a (j − 1)-epistatically bounded function whose support is m with bc(m) = k, and
then perturb the value of one point. Any probe that does not include the perturbed point
will return a value of zero. Since an order-j probe includes 2j points, and since there
are 2k probes, the probability of including the perturbed point is 2j−k.

Theorem 7. Let f be k-epistatically bounded and let J be the number of order-j hy-
peredges in the linkage hypergraph of f . If the number of iterations N in the order-j
linkage detection algorithm is chosen so that either

N ≥
ln(1− δ1/J)

ln(1− 2j−k)

or
N ≥ −2k−j ln(1− δ1/J)

then the probability that all order-j hyperedges are detected is at least δ.

Proof. In the following, a “success” is the detection of a nonzero probe. Theorem 6
shows that the probability of failure for one probe on one trial is at most 1 − 2j−k.
Thus, the probability of failure on N trials is at most (1− 2j−k)N , and the probability
of success on N trials is at least 1 − (1 − 2j−k)N . The probability of success on all J
hyperedges is at least

(

1− (1− 2j−k)N
)J

Thus, we want to choose N so that

(

(1− (1− 2j−k))N
)J
≥ δ

1− δ1/J ≥ (1− 2j−k)N

ln(1− δ1/J) ≥ N ln(1− 2j−k)

ln(1− δ1/J)

ln(1− 2j−k)
≤ N

To prove the second formula, note that − ln(1− x) ≥ x for any x > 0 from the Taylor
series of − ln(1− x). Thus, 2k−j ≥ 1/ ln(1− 2j−k). ut

Strictly speaking, these results do not apply to the LINC algorithm of [MG99b]
since the above analysis assumes that the backgrounds of probes are chosen indepen-
dently, and this is not the case for the LINC algorithm. However, our empirical results
show that these formulas are quite accurate when the backgrounds are chosen from a
population. (See Section 8.) In fact, it is much more accurate than the population sizing
formula given by [MG99b].

Thus, the overall worst-case complexity of the order-2 linkage detection algorithm
isO(2kL2 ln(1−δ1/J)) if one wants to maintain the same probability of overall success
as the string length increases. Munetomo and Goldberg [MG99b] give the overall com-
plexity of their LINC algorithm as O(2kL2), but this assumes that the probability of
success per subfunction of the embedded landscape stays constant as the string length
increases, which would seem to be a less desirable assumption.

8

6 Computing the Walsh Coefficients Using the Kargupta-Park
Top-down Algorithm

Kargupta and Park [KP01] give a “deterministic” algorithm to find the Walsh coeffi-
cients of a function f with k-bounded epistasis. It is “top-down” since it does high-
order probes before low-order probes. In this section we show how this algorithm can
be expressed in terms of probes.

Let wm be a maximal nonzero Walsh coefficient. The Maximal Probe Corollary
shows that P (f,m, c) = wm for any c ∈ Bm. Thus, if f has k-bounded epistasis, and
if we do the probe P (f,m, 0) where bc(m) = k, the result will be wm. Thus, all of the
order-k Walsh coefficients can be computed by doing

(

L
k

)

probes, each of which uses
2k function evaluations.

Let j be a mask with bc(j) = k − 1. Then Theorem 3 gives the equation

P (f, j, 0) = wj +
∑

j⊂u

wuψu(0) = wj +
∑

j⊂u

wu (2)

(Note that ψu(0) = 1.) The potentially nonzero Walsh coefficients in the summation
are all of order k and have been computed. Thus, wj can be computed from P (f, j, 0)
plus these order-k Walsh coefficients. Let m be such that bc(m) = k and j ⊆ m. If
the Probe Recursion Theorem is applied to P (f,m, 0) with n = m ⊕ j, then the first
term in the summation is P (f, j, 0). This shows that all function evaluations necessary
to compute P (f, j, 0) have already been done in the computation of P (f,m, 0). (This
observation is ours and is not included in [KP01].)

The same idea can be used to compute the lower order Walsh coefficients. Thus, the
Walsh coefficients are computed in of decreasing bit count, starting with bit count k.

7 Detecting linkage and computing the Walsh coefficients

Kargupta and Park [KP01] give a “bottom up” randomized algorithm that finds the
nonzero Walsh coefficients. They suggest that they can find the values of these nonzero
Walsh coefficients, but the method to do this is not included in their algorithm, and so
presumably one applies the algorithm referred to in Section 6.

In this section, we give a well-specified algorithm that efficiently finds the nonzero
Walsh coefficients and computes their values. The algorithm first proceeds in a bottom-
up fashion to find which Walsh coefficients are nonzero, and then it proceeds top-down
to determine their values without doing any additional function evaluations. (We assume
that function evaluations are disproportionately expensive to compute.)

A key observation is that if probe backgrounds are determined using a population, as
in the Munetomo/Goldberg LINC algorithm, then higher order probes can be computed
relatively cheaply by using the function evaluations of previously computed lower order
probes. This is justified by Theorem 8 below. In other words, computing P (f,m, c) can
be done with only one additional function evaluation as long as the probes for all a,
a ⊂ m, have been computed using the same background c.

Theorem 8. For any m ∈ B , c ∈ Bm,

f(m⊕ c) =
∑

a∈Bm

(−2)bc(a)P (f, a, c)

9

This can be restated as:

P (f,m, c) = f(m⊕ c)−
∑

a∈Bm\{m}

(−2)bc(a)P (f, a, c)

Proof. Using the definition of a probe, the conclusion can be rewritten as:

f(m⊕ c) =
∑

a∈Bm

(−1)bc(a)
∑

i∈Ba

(−1)bc(i)f(i⊕ c)

We prove this by induction on bc(m). The base cases of bc(m) = 0 and bc(m) = 1 are
easy. Let m = u⊕ v where u ∧ v = 0, u 6= 0, v 6= 0. Then

∑

a∈Bm

(−1)bc(a)
∑

i∈Ba

(−1)bc(i)f(i⊕ c)

=
∑

j∈Bu

(−1)bc(j)
∑

k∈Bv

(−1)bc(k)
∑

i∈Bj⊕k

(−1)bc(i)f(i⊕ c)

=
∑

j∈Bu

(−1)bc(j)
∑

r∈Bj

(−1)bc(r)
∑

k∈Bv

(−1)bc(k)
∑

s∈Bk

(−1)bc(s)f(s⊕ r ⊕ c)

=
∑

j∈Bu

(−1)bc(j)
∑

r∈Bj

(−1)bc(r)f(v ⊕ r ⊕ c)

= f(u⊕ v ⊕ c) = f(m⊕ c)

ut
The algorithm takes advantage of previously computed function evaluations by

caching all function evaluations in a hash table. When the function f is applied to a
bit string, this hash table is checked before doing the actual function evaluation.

The basic idea of the bottom-up part of the algorithm (TRAVERSE-HYPERGRAPH)
is to do a breadth-first traversal of the lattice of masks, starting with the empty mask,
then looking at the order-1 masks, etc. When a new mask m is considered for inclusion
in the linkage hypergraph, all submasks of order bc(m)−1 are checked for membership
in the hypergraph. If any of these submasks is not in the hypergraph, then m cannot be
in the hypergraph. If these tests succeed, then a sequence of probes is done to determine
if the mask is in the hypergraph.

The backgrounds of the probes can be determined either by using a population or by
randomly choosing background strings. The first element of the population or the first
background is the all-zeros string since this simplifies the computation of the Walsh
coefficients in the top-down part of the algorithm. If a population is used, the remainder
of the population is chosen randomly. The probe value using the all-zeros background
is saved in the hash-table hypergraph which is also used to determine whether a mask
has been added to the hypergraph.

In addition to the queue used for the breadth-first traversal, the masks added to the
hypergraph are stored in a linked list hypergraphList which is traversed in the top-
down part of the algorithm.

The TESTBYPROBES function does up toN probes using the mask a. If one of these
probes is nonzero (or greater than a tolerance in practice), then it returns the probe value
corresponding to the all-zeros string. If all probes are zero, then it returns null.

10

TRAVERSE-HYPERGRAPH()
population.initialize()
hypergraphList.initialize()
queue.initialize()
m← { } // Empty mask
ProbeV alue←TESTBYPROBES(a)
if ProbeV alue 6= null then

queue.add(m)
hypergraph[m]← ProbeV alue

end if
while queue.notEmpty() do

m← queue.remove()
probeV alue← hypergraph[m]
for all supersets a of m of cardinality bc(m) + 1 do

if all subsets of a of cardinality bc(m) are in the hypergraphList then
ProbeV alue←TESTBYPROBES(a)
if ProbeV alue 6= null then

queue.add(a)
hypergraph[a]← ProbeV alue
hypergraphList.addF irst(a)

end if
end if

end for
end while

The top-down part of the algorithm (COMPUTE-WALSH-COEFS) traverses the hy-
peredges of hypergraph using the list hypergraphList from higher order masks to
lower order, that is in the reverse order from which they were added to the hypergraph.
The Walsh coefficients are computed using only the function evaluations done in the
bottom-up part of the algorithm.

The algorithm is based on Equation 2. This equation would suggest that to com-
pute wa, one would want to traverse those supersets of a that correspond to hyperedges.
However, in the top-down algorithm we are already traversing these superset hyper-
edges, and it is more efficient to add the Walsh coefficient of each these superset hyper-
edges to its subsets, and this is what the algorithm does. In other words, as the supersets
of a are traversed in the algorithm, their Walsh coefficients are added to wCoef [a].

11

COMPUTE-WALSH-COEFS(hypergraphList)
for m ∈ hypergraphList do //traverse in the reverse order from the order added

probeV alue← hypergraph[m]
if wCoef [m] 6= null then wCoef [m]← wCoef [m] + probeV alue
else wCoef [m]← probeV alue end if
for each a ⊂ m do

if wCoef [a] 6= null then wCoef [m]← wCoef [a]− wCoef [m]
else wCoef [a]← −wCoef [m] end if

end for
end for

8 Empirical results

The test function used in this section is an embedded landscape with 50 5-bit subfunc-
tions and a string length of 50. Each subfunction is linear with a randomly placed “nee-
dle”. The coefficients of the linear function are chosen randomly from the interval [0, 1].
The needle is a single point with a value of 0.1 greater than the maximum value given
by the linear function. The support of each subfunction is randomly chosen. A value is
considered to be zero if it is less than 10−7. This class of test function represents the
worst case for the algorithms given in this paper.

The algorithm used is that given in Section 7. The algorithm is considered to be suc-
cessful only if it correctly finds all hyperedges of the hypergraph. On smaller examples,
when the algorithm finds all hyperedges, it correctly computes all Walsh coefficients.
When the algorithm fails (on this class of functions), it is most likely to fail when doing
the order-2 probes. Thus, the formula of Theorem 7 should be applied with j = 2 and
k = 5. The number of order-2 hyperedges is at most 50

(

5
2

)

= 500 since there are
(

5
2

)

order-2 hyperedges per subfunction. However, some of these overlap, and the actual
number is about 420.

The algorithm of Section 7 was run for 1000 trials for each of N = 40, 50, 60, 70,
80, 90, whereN is the number of probes per potential hyperedge. (i. e.,N is the popula-
tion size.) The algorithm was also run with the same parameters using randomly chosen
backgrounds instead of backgrounds from a population. In addition, the first equation
of Theorem 7 was solved for the success rate for the same values of N and with j = 2,
k = 5, and J = 420. These are shown in the table on the left below. The table on the
right shows the average number of function evaluations for these experiments.

These results suggest that when f is an embedded landscape with the number of
subfunctions being O(L), then the complexity is given by the formula of Theorem 7.
Further theory and/or experiments are needed to confirm this hypothesis.

Accuracy
N Theory Population Random
40 0.1331 0.222 0.168
50 0.5889 0.658 0.648
60 0.8700 0.891 0.888
70 0.9640 0.963 0.967
80 0.9904 0.992 0.992
90 0.9975 1.00 0.995

Function Evaluations
N Population Random
40 69008 279526
50 85889 345577
60 102547 411381
70 119241 490876
80 135907 540427
90 152501 604383

12

9 Conclusions

There are two contributions of this paper. First, the paper gives a rigorous mathematical
foundation for perturbational methods for determining the epistatic structure of a func-
tion from binary strings to the real numbers. These methods are closely related to the
Walsh basis representation of the function.

Second, the paper gives two new randomized algorithms. The first generalizes the
LINC algorithm of [MG99b] and [MG99a] to finding epistasis of arbitrary order. The
primary parameter in the algorithm is the number of probes. If the function has k-
bounded epistasis (is k-delineable in the terminology of [MG99a]), then rigorous bounds
can be given for the number of probes that are needed, and this leads to a complexity
analysis of the algorithm. The second algorithm generalizes the algorithms of [KP01].
This algorithm both determines the epistatic structure and finds the Walsh coefficients
of a k-epistatic function. It is more practical when most of the Walsh coefficients of
order less than k are zero. This algorithm is more efficient than the methods of [KP01].

More research is needed in applying this class of algorithms to functions where the
assumptions of k-bounded epistasis and sparseness of the Walsh basis representation
are only approximately satisfied. Further research is also needed in understanding how
genetic algorithms and estimation of distribution algorithms can work in tandem to take
advantage of the epistatic structure of functions that can be discovered by algorithms
such as the ones given in this paper.

References

[Bro00] E. D. Brodie. Why Evolutionary Genetics Doesn’t Always Add Up, pages 3–19. Oxford
University Press, Oxford, England, 2000.

[Hec99] Robert B. Heckendorn. Walsh Analysis, Epistasis, and Optimization Problem Difficulty
for Evolutionary Algorithms. PhD thesis, Colorado State University, Department of
Computer Science, Fort Collins, Colorado, 1999.

[Hec02] Robert B. Heckendorn. Embedded landscapes. Evolutionary Computation, 10(4):345–
376, 2002.

[HW99] R. B. Heckendorn and Darrell Whitley. Predicting epistasis from mathematical models.
Evolutionary Computation, 7(1):69–101, 1999.

[KP01] H. Kargupta and B. Park. Gene expression and fast construction of distributed evolu-
tionary representation. Evolutionary Computation, 9(1):43–69, 2001.

[MG99a] Masaharu Munetomo and David E. Goldberg. Identifying linkage groups by
nonlinearity/non-monotonicity detection. In W. Banzhaff et. al., editor, Proc. of the
Genetic and Evolutionary Computation Conference, volume 1, pages 433–440, Palo
Alto, CA, 1999. Morgan Kaufmann Publishers, Inc.

[MG99b] Masaharu Munetomo and David E. Goldberg. Linkage identification by non-
monotonicity detection for overlapping functions. Evolutionary Computation,
7(4):377–398, 1999.

[MM99] Heinz Mühlenbein and Thilo Mahnig. Convergence theory and application of the
factorized distribution algorithm. Journal of Computing and Information Technology,
7(1):19–32, 1999.

[MMR99] Heinz Mühlenbein, Thilo Mahnig, and Aberto O. Rodriguez. Schemata, distributions
and graphical models in evolutionary optimization. J. of Heuristics, 5:215–247, 1999.

