State aggregation and population dynamics in

linear systems

Jonathan E. Rowe Michael D. Vose
School of Computer Science Computer Science Department
University of Birmingham University of Tennessee
Birmingham B15 2TT Knoxville, TN 37996
Great Britain USA
J.E.Rowe@cs.bham.ac.uk vose@cs.utk.edu

Alden H. Wright
Dept. of Computer Science
University of Montana
Missoula, Montana 59812
USA

wright@cs.umt.edu

Abstract

We consider complex systems that are comprised of many interacting
elements, evolving under some dynamics. We are interested in character-

izing the ways in which these elements may be grouped into higher-level,



macroscopic states in a way which is compatible with those dynamics.
Such groupings may then be thought of as naturally emergent properties
of the system. We formalize this idea, and, in the case that the dynamics
are linear, prove necessary and sufficient conditions for this to happen. In
cases where there is an underlying symmetry amongst the components of
the system, group theory may be used to provide a strong sufficient condi-

tion. These observations are illustrated with some artificial life examples.

1 State aggregation and dynamical hierarchies

Many naturally occurring systems are comprised of a large collection of com-
ponents, which interact with each other, and possibly with some background
environment. These components often cluster into larger units: for example,
DNA molecules in a cell nucleus, helium atoms in a balloon, people in a crowd.
These units may themselves be components of some larger system. When per-
forming simulations of such systems, rules are specified for the most basic com-
ponents. It is hoped that, if the rules are correctly specified, then the behavior of
the higher-level units will emerge from these low-level interactions. On the one
hand, there are practical limitations to naive simulation based on this approach;

quoting from [6]:

“The resulting high dimensionality of most biological systems should

make ... the state dynamic ... completely intractable.”
On the other hand, that obstacle might be circumvented:

“ ... the conceptual identification of “units” of biological structure

and function ... is [made possible by] the fortunate fact that an



exhaustive ... state space is not necessary ... ”

An interesting question, which we begin to address in this paper, is to ask
whether it is possible to deduce “units” in terms of which the dynamics can be
expressed ezactly.! As a first step, we would like to have necessary and suffi-
cient conditions. We would also like to know under what circumstances such
structures are non-trivial. For example, helium atoms in a floating balloon, and
grains of sand in a pile [2] seem intuitively to have at most a highly trivial hier-
archical structure. Can this be formalized? We will show why these examples
are trivial, and characterize conditions for non-triviality.

We begin, in section 2, by defining, in a formal way, what is meant by the
term “higher-level unit”. We suggest that they could comprise aggregations
of the basic components. That is, the set of underlying components will be
partitioned into disjoint subsets, and each subset will then be considered as a
unit in its own right. If we are given equations specifying the dynamics of the
basic components, we want to be able to reconstruct the equations describing
the dynamics of the subsets, from the subsets alone. If that is possible, we
will say the particular way of partitioning components into higher-level units is
compatible with the dynamics. Whereas approximating the dynamics of higher-
level units is both interesting and is sometimes the best one can do, the question
this paper is concerned with is whether one can do better than approximation,
and if so, then by which subsets.

We will be modeling the dynamics of our system through a map that takes

a population (that is, a collection of components in some configuration) at a

1 Approximate methods for aggregating states in, say, a Markov process have been consid-
ered by other authors (see, for example, [8]).



given time step, and calculates the expected state at the next time step. In this
paper, we will limit ourselves to the case where this map is linear (section 3).
This case includes the description of systems forming a Markov process. The
non-linear case will be investigated in a future paper. Aggregation on systems
has previously been considered in [7]. However, that paper assumes the set of
state variables describing a system is decomposable as well as aggregable. That
is, the system is decomposed into a partition of subsets, in which there is little
or no interaction between the aggregated states (interaction takes place within
the subsets — not between them). We do not hypothesize this restriction, and
allow interactions between aggregated states to occur.

Before developing our theory, we present a simple example (section 4) which
should clarify the issues. Section 5 explains how symmetries inherent in the
system of underlying components can be described mathematically using ele-
mentary group theory. This is one feature which distinguishes our work from
that of [6] (another is that our theorem 2 provides a condition which is neces-
sary as well as sufficient). We then go on to show that the existence of such
symmetries can be used to provide strong sufficient conditions for which a given
state aggregation will be compatible with the underlying dynamics. This is the
group orbit theorem which is proved in section 6.

We then present two examples which illustrate the application of our theo-
rem. In section 7 we present a simplified model of molecules passing through
a unidirectional membrane. In this example, the equations describing the dy-
namics can be dramatically simplified by using an appropriate hierarchy of state
aggregation. Section 8 looks at the mutation of binary “DNA” strings (such as

are typically used in genetic algorithms, for example). In this case we character-



ize a range of higher-level units that are compatible with the action of mutation.

Section 9 presents a final example which speaks to the generality of our results.

Notation

We follow the convention that a logical expression in square brackets, [expr],

evaluates to 1 if the expression is true, and 0 otherwise.

2 Compatibility of equivalence relations

In this section we formalise our concept of aggregation, and define what it means
for an aggregation to be compatible with the underlying dynamics of the system.
To illustrate the definitions, we will use the following simple example, based on
modelling voters’ behaviour. We suppose there are three political parties: a
centre party (C), a left wing party (L) and a right wing party (R). Between two
elections, there is a chance that a voter will switch allegiance. A supporter of the
centre party will stay loyal with probability 0.8, and switch to either of the other
parties with probability 0.1 each. A left or right wing voter may vote for the
centre party in the next election with probability 0.4, otherwise, they will stay
loyal to their respective parties. The dynamics of the voters’ behaviour from
election to election is therefore described by the following Markov transition

matrix:

L C R

L|06 01 0

c|04 08 04

R| 0 01 06




In general, we suppose that we have a set (or population) of N basic com-
ponents in our system, and that each component may be in one of a number of
states. The notion of a state is quite general. A state might be the position of a
component in space; a disposition to react in a given way; an indication of how
a component might be perceived by others, and so on. In our voting model, a
state will be a voting choice (that is, one of {L,C,R}). We will assume that
the set of possible states is finite. To preserve generality, we will simply number
the states and refer to the set of all states as @ = {0,1,2,...,n —1}. We will

characterise a population of components by a population vector

D= (pO;pla ... apn—1>

in which py is the proportion of components in the population that have state
k € Q. We follow the convention that a vector delimited by angle brackets
denotes a column vector (thus matrices would be multiplied on their right by
population vectors). Notice that this vector is independent of the population

size N, so that
n—1
> =1
k=0
We define the population state space to be
A= {a:ER" :Zxkzland;ck ZOforallk}
k

so that any population vector is an element of A. In the voting model, if an

eighth of the voters choose L, a half choose C and the remaining three eighths



choose R, then the population vector is p = (0.125,0.5,0.375).
We suppose that the equations describing the dynamics of the basic compo-
nents of the system are known. That is, we have a map G : A — A, from which

we can reconstruct the dynamics of the system as follows:

1. If the system is deterministic then, given a population p at a given time

step, G(p) is the population at the next time step.

2. If the system is stochastic then, given a population p at a given time step,
G(p) is a probability distribution over the set of states Q. This distribution

is sampled N times to give the population at the next time step.

This model is the random heuristic search model developed by Vose [10]. In
the voting model, the map G is given by the transition matrix shown above. In

other words:

Gx)r = 0.6z +0.1z¢
g(.’L‘)C = 04z +08xc +0.4zp
G(xr)r = 0.dzc+0.6zg

We are interested in defining a partition of the components. We begin by
assuming there is an equivalence relation, =, defined on Q. That is, if a,b € Q
are equivalent, a = b, then we consider these two states to belong to the same
higher-level unit. For example, we may consider that the two extremist parties L
and R are sufficiently similar that they can be lumped together into an extremist

set X. This is done by declaring that they are “equivalent”. Such an equivalence



relation can be extended to any z,y € R" as follows:

rT=y &= Z[j =ilz; = Z[j =ily; forall i
JEQ JEQ

It suffices that the summations (above) be equal for equivalence class repre-
sentatives (i.e, for a collection of elements i, one from each equivalence class).
Consider the components of a vector z € R" as assigning some weight to each
element of Q (that is, =, is the weight assigned to k). Then this definition says
that two vectors are equivalent if and only if they both assign the same total
weight to each of the equivalence classes of 2. In the voting model, we can
say that two distributions of voters are equivalent if the same number of people
vote for the extremist parties and the same number of people vote for the centre
party in each distribution. That is x =y if xt¢ = y¢ and z;, + zg = yr + Yg-
We are now in a position to relate the partitioning of Q (in terms of the

equivalence classes determined by =) to the dynamics given by G.

Definition 1 We say that a map G : R* — R™ is compatible with an equiva-

lence relation = if

z=y= G(z) = G(y)

for all z,y € R™.

Two populations are equivalent if they assign the same weight to each equiva-
lence class. If the map G is compatible, then we can follow the dynamics of just
the equivalence classes (the “higher-level units”) without worrying about their

microscopic details. That is, for a compatible map, we can follow the dynamics



of the higher-level units as units in their own right. An interesting question
therefore is, given a map G which determines the microscopic level of dynamics,
what are the equivalence relations with which it is compatible? In other words,
what are the naturally emergent higher-level units associated with the dynamics
of the microscopic level?

In the voting model, we can directly verify that the aggregation of the two ex-
tremist parties is compatible with the dynamics. For if x = y are two equivalent
distributions then G(z)c = 0.4(xL+zg)+0.82¢c = 0.4(yL+yr)+0.8yc = G(v)c-
Similarly, G(x)r + G(z)r = 0.6z1 + 0.22¢ + 0.6zg = 0.6(xy + zg) + 0.2z¢c =

0.6(yr +yr) +0.2yc = G(y)L + G(¥)r-

3 Linearity and Markov processes

In this paper, we will restrict our attention to the case when the map G is linear.
Notice that we are considering this map to be defined for the whole of R” and
not just on A. By linear it is meant that for any vectors z,y € R" and for any

real numbers A, p € R

Gz + py) = MG () + pG(y)

While this is an obvious limitation, it does include, for example, the case when
the system is a Markov process and the map G is given by the transition ma-
trix of the Markov chain. We will give three examples of simple artificial life
simulations. The general non-linear case will be the subject of further work.

In the linear case, we can make some progress as follows.

Definition 2 Given an equivalence relation = defined on (2, let k be the number



of equivalence classes. We define = to be the k X n matriz with i,j entry

(We take i to range over a set of equivalence class representatives).

The purpose of this matrix is to map a population, considered as a distribution
over the underlying component states €2, to a corresponding distribution over
the higher-level units, given by equivalence classes.

For example, suppose @ = {0,1,2,3,4,5} and our equivalence relation in-
duces a partition {0, 1,2}, {3,4},{5}. We pick the elements 0,3,5 to be repre-

sentatives of each class. Then the matrix = is

111000
E=1000110

0 00 0O0T1

If we have a population vector p = (0.1,0.2,0.1,0.3,0.15,0.15) then Ep =
(0.4,0.45,0.15) which is the distribution over the equivalence classes.
Recall that the kernel of a linear operator is the subspace of vectors which

are all mapped to 0 by the operator. So the kernel of Z is the subspace

KerZ = {z € R" : Zz = 0}

(That this set forms a subspace of R can be easily checked).

We now have the following results:

Lemma 1 Let x,y € R*. Then x =y if and only if t —y € KerZ=.

10



Proof

Z[j =il = Z[j = i]y; for all representatives ¢
jeQ jeQ

8
I
<@

(A |

(Ex); = (By); for all ¢

[1]

(z-y)=0

z—y € KerZ

O

Theorem 2 If G : R® — R” is a linear map, then it is compatible with = if

and only if KerZ is an invariant subspace of G. That is, G(KerZ) C KerZ=.

Proof

1. Suppose G is compatible, and let v € KerZ=. That is, v = 0. Therefore,
by compatibility, G(v) = G(0). But since G is linear, G(0) = 0. Therefore

G(v) = 0 so by the previous lemma, G(v) € KerZ.

2. Conversely, suppose that KerZ= is an invariant subspace of G. Let x = y,
so that z — y € KerZ. By hypothesis, G(z — y) must also be in KerZ.
But G is linear, so G(z) — G(y) € KerZ. Therefore G(z) = G(y) and so G

is compatible with =.

It is helpful to notice that KerZ= is the set of all vectors that assign zero
total weight to each equivalence class.

Returning once more to the voting example, in which the dynamics is given

11



by a matrix (that is, a linear operator), the matrix = takes the form

L C R
01 0
X|1 0 1

KerZ is the space of all vectors satisfying ¢ = 0 and zr, + xg = 0. For any

vector £ € KerZ, we have

G(z)c =0.4(zr, + zR) +0.82¢ =0

and

G(z)r + G(x)r = 0.6z + 0.22¢ + 0.62r = 0.6(xL + zr) + 0.22¢c =0

and so z € KerZ implies that G(z) € Ker=, which proves that the aggregation

is compatible with the dynamics.

4 Example: migration

We take a very simple example to illustrate our definitions. Suppose we have a
population of birds that spend most of the year on certain lakes, each bird living
at a particular lake. There are some lakes in the north and some lakes in the
south. Every winter, some of the birds from the north fly south, while birds from
the south fly north. There is a small chance a bird will not migrate. The exact
lake that a bird will end up at varies each trip. We might model this process

stochastically as follows. For each lake in the north, we assign a probability

12



distribution over the southern lakes. This gives the probability that a bird from
that northern lake will end up at any one of the southern likes. Similarly, for
each southern lake, there is a probability distribution over the northern lakes.
There is also a small probability of a bird remaining at the same lake.

For example, suppose there are five northern lakes Ny, N2, N3, Ny, N5 and
three southern lakes Si,S2,Ss3 (see figure 1). We associate the states of our
system with these lakes through a bijection with the set Q = {0,1,2,3,4,5,6,7}

given by:

Our population of birds can be described by a population vector over these eight
lakes.

Given a lake in the north, N; say, there is a probability distribution over
51,52, 53 describing the chance that a bird migrating from N will arrive at
each of these lakes. There is also a probability € that the bird will remain at
Nj.

We can therefore define a linear operator describing this process by:

My, s; = probability that bird will migrate from S; to N;
Ms; N, = probability that bird will migrate from N; to S;
My, N, = €li=j]
Ms,s, = eli=j]

If p € A describes the population distribution over the lakes at a given time step,

13



then Mp gives us a distribution which, when sampled an appropriate number
of times (one for each bird) simulates what happens at the next time step.

It is clear that we can reduce this eight state system to a much simpler
two state system, by aggregating together the northern and southern lake birds
respectively. If a bird is in the north, there is a probability € of remaining in the
north. Otherwise it will fly south. Similarly for a bird currently in the south.

We can define a linear operator for our two state system by

The reason this aggregation is compatible with the dynamics of the individual

birds is as follows. The projection matrix = for this aggregation is

11111000

m
Il

0000O0T1T11

So if we had a distribution of birds p = (0.1,0.2,0.1,0.05,0.15,0.2,0.0,0.2) then
Zp = (0.6,0.4)) gives the proportions of birds in the north and south respec-
tively. The kernel of this operator, KerZ, is the set of all vectors giving zero
weight to both northern and southern lakes. That is, the set of vectors z with
the property Zz = (0,0). Our theorem tells us the dynamics of the underlying
system (given by the matrix M) is compatible with this aggregation provided
that if x is any given vector in the kernel of =, then calculating M2z would give

another vector, also in the kernel. We can check this by writing the matrix M

14



in block form:

0 | My

Ms| O

where M is a 5 x 3 matrix giving the probability distributions for birds flying
from north to south, and Mg is a 3 x5 matrix giving the probability distributions
for birds flying from south to north. Iis the 8 x8 identity matrix. Let z € KerZ=.
We will write £ = (xn,xs) where zy is a vector giving the distribution of birds
in the north, and zg gives the bird distribution for the south. The components

of each of these sum to zero, since Zz = (0,0). Now

0 ‘ MN N el ‘ 0 N MN:I?S ETN

el Ts Msxzpn ETS

Let us write EMz = (u,v). Then

u = Z(MNxs)i + Ze(xN)i
Z Z(MN)i,j (xs);
= ) (z5); Y_(Mn)ij

J i

(L= (zs);

J

=0

Similarly, we can show v = 0. This confirms that Mz € KerZ as required.

15



Northern Lakes

Southern Lakes

Figure 1: Birds migrate from northern to southern lakes and vice versa

5 Symmetry and group theory

Suppose that, in the migration example, there was just one probability distri-
bution over the southern lakes. Then it wouldn’t matter which of the northern
lakes a bird sets off from — the probability of where it arrives is the same.
There would then be a symmetry between each of the northern lakes, meaning
that we could interchange them freely and the dynamics of the system would
be unaffected. It is clear that all these lakes can be grouped together in that
case. Obviously, this is a much stronger condition than we need to achieve a
compatible partitioning. But it gives us a clue as to how we might prove some
sufficient conditions for achieving compatibility.

Mathematically, symmetry is captured using group theory. One starts with
an underlying set — in our case the set is 2. One then considers permutations
of this set (that is, bijections) which somehow leave the “shape” of the set

unchanged. In geometry, these permutations might be rotations and reflections,

16



for example. We establish a collection of permutations of 2 which we will call

L(€2) which has the following properties:
1. The identity map is in L((2).
2. If a € L() then a~! € L(Q).
3. If a and b are in L(Q) then so is a o b.

The collection L(Q) of permutations forms a group, which is said to act on Q.
The permutations represent the natural “folds” of the underlying set. They
define a set of equivalence classes, called the orbits of the group action. For

each 7 € 2 we define its orbit to be:

L(G@)={j € Q:j = a(i) for some a € L(N)}

Each orbit is an equivalence class of the equivalence relation

i=j<jeL@)

In the following section, we will define a special group of permutations on 2
based on the properties of the map G. This will lead to an equivalence relation,

whose equivalence classes are guaranteed to be compatible with G.

6 The group orbit theorem

Let a be a permutation of 2. We associate with a the matrix o, with has
i,j entry [i = a(j)]. It is simple to check that ¢ = o, = o,-1 and that

Oaob = 0g © 0p, for all permutations a, b.

17



Given G : R* — R” is a linear map, define H(G) to be the set of all permu-

tations of Q that commute with G in the sense that:

a€ HG) <= 0,0G=Goao,

Then we have the following:
Lemma 3 H(G) is a group action on .

Proof The identity is clearly in H(G) since it commutes with any operator.
If a € H(G) then, by definition, o, 0 G = G o 0, so by rearranging we see

070G = Goo;! and therefore g,-1 0G = Goo,-1. Finally, if a,b € H(G) then

Oab©G = 0,00,0G
= o0,0Goo0y
= Googgo0

= Googem

Let G be a subgroup of H(G), and define an equivalence relation on by

i=j< da€qG,i=ay)

That is, the equivalence classes are the orbits of the elements of G. We write

18



the orbit of element i as G(7). We extend this to an equivalence relation on R™

T=y & Vt,Z[z‘ =tz = Z[z = tly;

%

& VY i€ Gz = li € G(t)ly:

& Vi, Z[z = a(t), some a € Glz; = Z[z = a(t), some a € Gly;

4

We want to count this sum over elements of G instead of over elements of
2. However, there is the possibility of double counting. This occurs if there are
two permutations a,b € G such that a(t) = b(t) = 4. So, given any i € Q, we

need to know how many permutations map ¢ to i. Write
Gii={a€G:at) =i}
Suppose i € G(t), and let g € G¢;. Consider the function
¢: G = Gy
given by
¢(a) =goa

This map ¢ is a bijection. (Since if ¢(a) = ¢(b) then g o a = g o b which gives
a=">. And if b € Gy, then g7' ob € G+ and ¢(g~! ob) = b). This means that
the number of elements of Gy ; is the same as the number of elements of Gy .
That is, this number is independent of i. (This result is based on a theorem

in [1]).

19



Our condition for equivalence becomes:

Yacc Talt) _ 2aaeG Yat)

T = & Vi, =
Y Gl Gl

< Vi, Z To(t) = Z Ya()
a€G a€EG

&V, Z(Ua—lﬂf)t = Z(Ua—ly)t
a€G a€G

& Vi, Z (aam)t = Z (aay)t
a€eG a€G

& Vi, (Z Uax)t = (Z Gay)t
a€G a€G

< Z OqX = Z 0oy

a€G a€G

Now suppose z = y and consider the effect of applying G.

Z 0.9 (x) Z G(oax)

a€G a€eG

~olze)

= g (Z Uay)
aeG
= Z G(oay)

acG

= Z 0.6 (y)

aeG

and so G(z) = G(y). We have therefore proved

Theorem 4 If G : R® — R"™ is linear, and G is a subgroup of H(G), then G is

compatible with the equivalence relation given by the orbits of G acting on ).

If G commutes with G, then Go, = 0, G for all g € G. Let e; denote the ith

column of the identity matrix, then for all 7 and j,

Gij = €;Gej = (04:)T0,Ge; = (0ge)) Goge; = ey Gegiy = Gy(ig)

20



It follows that if o and 8 are equivalence classes (orbits) and a € «, then the
collection of probabilities from a to (b in) B (as b varies over () is independent

of a, since, for any h € G,

{Gagv) : 9€ G} = {Gan-109(0) : 9 € G} = {Gn(a),9p) : 9 € G}

This is described by saying “the outgoing probabilities are invariant”. Similarly,
if & and 8 are equivalence classes and b € 3, then the collection of probabilities
from (a in) a to b (as a varies over a) is independent of b. This is described by

saying “the incoming probabilities are invariant”.

7 Example: unidirectional membranes

In this section we present a simplified model of molecular flow through a unidi-
rectional membrane. This phenomenon occurs, for example, in Golgi bodies [3].
Molecules move around randomly within some confined space. The space is
divided by a membrane which allows the molecules to pass through in one di-
rection only. Obviously, we expect that eventually all molecules will end up on
one side of the membrane. We wish to study the dynamics of this process, using
our group orbit theorem to simplify the model.

The simulation set-up is shown in figure 2. There is a 10 x 10 grid on
which the molecules wander at random. At each time step, a molecule picks
a neighbouring square (north, south, east or west) to move to, uniformly at
random. Molecules next to the left boundary cannot move further left: they
only have a choice of three neighbours. Similarly, molecules next to the right

boundary cannot move further right. It is assumed, though, that the top and

21



Figure 2: Molecules move around a tissue at random, but can only pass one
way through the membrane

bottom of the grid are connected (so the topology is cylindrical). There is a
membrane running from top to bottom, half way across the grid. Molecules to
the left of the membrane can move freely across it. However, molecules to the
right are not allowed to pass back. Thus, molecules immediately to the right of
the membrane also have a choice of only three neighbours.

Our initial model of this system requires 100 states. We label the squares
on the grid from 0 to 99, counting from left to right, and top to bottom. The
distribution of molecules in the system at any time step is given by a population
vector p = (po,p1,--- ,Pes) Where py is the proportion of molecules in square
k. Each square k has a set of neighboring squares denoted v(k) which are the
legal moves allowed for a molecule at k. For example, v(0) = {1,10,90}. We

describe the evolution of the system by a linear map A given by:

_liesy)
A=)

which gives the probability that a molecule moves from square j to square i.

22



The matrix A is 100 by 100. We seek to illustrate our theory by reducing this
number of states by exploiting the symmetries that exist in the system.

For each m = 0,1,...9 we define a bijection of Q = {0,1,...,99} by

k if £k mod 10 #m
am(k) =
k 4+ 10 mod 100 otherwise
The idea is that the number m indexes a column of the grid. The application
of a,, to square k is to do nothing unless the square is in column m, in which
case we shift down to the square beneath (wrapping round to the top if k is on
the bottom row).
The collection ag,aq,-..,a9 does not itself form a group. We also need
to include the effects of repeatedly applying each map (a?, means apply a,
repeatedly 7 times) and of combining maps together (a,, o a,y means rotate
both columns m and m'). This gives us the group generated by ag,as,- .. ,aq
(including the identity map). It is not hard to see that this group is commutative
(that is, it does not matter what order each group element is applied). Therefore
if the map A commutes with each of ag,a1,... ,a9 then it commutes with the
whole group. To ease notation we will denote by ¢,, the matrix with ¢, j entry

[i = am(j)]- Now

A _ [k € v(j)]
on s = 2= enOI T Gy
_ 1y, [k € v(j)]
= 2l ) =G
_ [aa' () € v()]
lv(4)|

23



and

Uom)iy = SEE BN o,y

It is clear from the rotational action of a,, that

()] = [v(am(5)|

and that

am (v(4)) = v(am(j))

and therefore 0., A = Aop,.

We therefore know that A commutes with the whole group and so will be
compatible with its orbits. But what are the orbits of the group action? Apply-
ing group members to a particular square either leaves it alone (if it is not in
the appropriate column) or rotates it downwards. The orbits are therefore the
columns of the grid. Our theorem tells us, therefore, that we can consider each
column to be a high-level unit in its own right, and that we can write down the
dynamics of the system in terms of these units. Accordingly, we number the

columns giving a new set = {0,1,...,9}. The dynamics of the system at this

24



new level of description is given by the linear operator

2/3 1/4 0 0 0 O 0 0 0 0
1/3 1/2 1/4 0 0 0 O 0 0 0
0 1/4 1/2 1/4 0 0 0 0 0 0
0O 0 1/4 1/2 1/4 0 0 0 0 0
O 0 0 1/41/2 0 0 0 0 0
0O 0 0 0 1/4 2/3 1/4 0 0 0
o 0 0 0 ©0 1/3 1/2 1/4 0 0
O 0 0 0 0 0 1/4 1/2 1/4 0

o 0o 0 0 0 0 0 1/4 1/2 1/3

o 0 0 0 0 0 0 0 1/4 2/3

We have successfully reduced the number of states of the system from 100 to 10,
by aggregating states into higher-level units. However, we can go further still.
Note that an invariant subspace of C' is spanned by {es, eg, €7, €g, €9 }. Moveover,
the orthogonal complement of (1,...,1) is also an invariant subspace, since C is
column stochastic. It follows that the intersection S of these spaces is invariant.

By theorem 2, therefore, we could aggregate further by choosing = such that its

25



kernel is contained in S,

[1]
I

Hence we can aggregate together all of the columns to the right of the membrane,
and remain compatible with the dynamics. Our group orbit theorem does not
apply here, however, as the probability of moving from column 4 to column 5
(that is, 1/4) is not identical to the probability of moving to column 6, say (which
is zero). Remember that the group orbit theorem gives a sufficient condition for
compatibility, which is rather strong — it requires all the incoming and outgoing
probabilities to be invariant.

Aggregation according to Z reduces the number of states to six. We number
these 0,1,2,3,4,5, where state 5 represents all the columns to the right of the
membrane; the other states are the corresponding left columns as before. The
resulting dynamics is given by the matrix R = ECD~'ZT where the diagonal
matrix D has i th diagonal entry equal to the cardinality of the equivalence class

containing ¢ (the details of why the dynamics of the aggregation would take this

26



form are laid out in [10], and, using different language, in [6]). Therefore,

2/3 1/4 0 0 0 0
1/3 1/2 1/4 0 0 0

0 1/4 1/2 1/4 0

[en)

o

0 1/4 1/2 1/4

[en)

0 0 0 1/4 1/2 0

0 0 0 0 1/4 1

We can then use standard Markov chain theory to predict the expected time for

a molecule to cross the membrane, depending on which column it is starting in:

initial state ‘0 1 2 3 4

time to cross | 55 52 45 34 19

8 Example: mutation of binary DNA

Our next example relates to the mutation of “DNA” which we represent as a
fixed-length binary string (for example, this is common in genetic algorithms).
Each bit in a string will be mutated with some fixed probability u. Our pop-
ulation comprises a pool of such strings, and we wish to track their evolution
under this mutation operator.

The set of all binary strings of length £ can be conveniently identified with
the set of integers Q = {0,1,...,2¢ — 1} by interpreting the strings as being
integers written in base 2. The population at a given time step is therefore given

by a vector p = (po,p1,--- ,P2¢_1)- The dynamics of this system is given by a

27



matrix U defined by

U’i,j o uh(zﬂj)(l — u)f—h(i,j)

where h(i,j) is the Hamming distance between strings ¢ and j (that is, the
number of bits at which they differ in value). Put another way, i ® m is the
result of mutating ¢, where @ denotes bitwise exclusive-or (of bit strings), m is

chosen with probability

u#m(l - u)‘q—#m

and #m denotes the number of bits in m that are equal to 1 (m is commonly
referred to as a mutation mask).

We wish to establish whether or not the set of all strings can be partitioned
into higher-level units which are compatible with these dynamics. We are there-

fore lead to identify the structure of the group H(U).

Theorem 5 Suppose 2 is identified with the set of binary strings of length £
and let U be the mutation matriz corresponding to bitwise mutation with rate u.

Then H(U) is the group of the automorphisms of the hypercube.?

Proof
The hypercube is the graph that has elements of () as vertices, with edges
between vertices that differ in only one bit. Let a € H(U). We can view a as

a permutation of vertices of the hypercube. Let i,j € Q be vertices that share

2 An automorphism of a graph is a permutation of the vertex set such that edges are mapped
to edges. See [1].

28



an edge, so that i @ j contains a single bit. We want to show that a(i) and a(j)
also share an edge.

Since U commutes with a, U,(;),4(j) = Us,j- Hence the probability of picking
mask ¢ @ j is the same as picking a(i) ® a(j). But when mutation is by a rate,
this probability depends only on the number of ones in each mask. Thus if ¢
and j differ in one bit, so do a(i) and a(j). This shows that a € H(U) is an
automorphism of the hypercube.

Conversely, suppose 7 is an automorphism. Then the number of ones in ¢ @ j
is the same as the number of ones in 7 (i) ® 7 (j), for every i,j € Q.3 Therefore
the probability of picking ¢ @ j as a mask is the same as picking 7 (i) @ 7(j),
and 80 Uy(s),x(j) = Ui,j. It follows that U commutes with 7 (using the matrix
algebra following theorem 4).

O

The automorphisms of the hypercube are generated by
1. masks (under exclusive-or)
2. permutations of bit positions

For example, suppose £ = 5, and consider the set of strings

{00000, 01000, 10000, 11000}

If we let each of these strings act on 2 as a mutation mask, then we obtain a
subgroup of the automorphisms. This subgroup generates orbits whose mem-

bers agree on the final three bits. Such a collection is referred to as a schemata

3This follows by induction on the number of ones in question and using the fact that the
automorphisms form a finite group under composition.

29



family in the genetic algorithm literature [5]. Another subgroup is the set of
permutations of bit positions that shuffle the order of the first four bits. The
orbits generated by this subgroup comprise sets whose strings contain the same
number of 1s and 0s in the first four positions. Such collections are sometimes
referred to as wnitation classes. The fact that mutation is compatible with
unitation classes can be exploited to investigate the evolution of asexual popu-
lations [4, 11]. Other equivalence relations that are compatible with mutation
include combinations of schemata and unitation classes. For example, we could
collect together strings that agree with each other on bits 2 and 4, and have the
same number of ones in bits 1, 3, 5. One such set is {01011,01110,11010}.

It should be noted that aggregation by schemata is also compatible with the
dynamics of a variety of standard crossover operators, although here the dynam-
ics are non-linear [10, 9]. Unitation classes are not compatible with crossover,

however.

9 Generality

This section collects some simple observations of a technical sort concerning
the generality of our framework (this framework is developed in [10]). There
need not be anything special about the coordinate system which determines the
matrix of the linear operator G. A change of variable, say y = Wz, transforms
the system z' = Gz into the equivalent system y’ = WGW ~ly in which Zz has
become =W ~ly. In this new system, the equivalence operator (or “aggregation
operator”, call it what you will) is an arbitrary full rank matrix, namely ZW —*

(it is arbitrary to the extent W is).

30



This process can be reversed. For example, consider the system y' = Ay

where

1 4 0
A = 2 5 —2
3 6 -2

Simply imagine that = represents an equivalence relation = for some system
z' = Gz from which y' = Ay is obtained through some change of variable matrix

W. Since the kernel of the following matrix (with imagined name =W 1)

is {{r,0,7) : r € R}, which is invariant under A, theorem 2 can be applied, and
implies the imagined relation = is compatible with G = W' AW . Expressed in
our system y' = Ay, this means the variables (u,v) = (yo +y1 — y2,y2 — yo) are
“higher-level units” which have dynamics in their own right that are compatible
with A. Choosing W to be any full rank matrix making Z a partition (let
W map—>by multiplying on its left—the displayed matrix above to a partition

matrix), say

1 0 -1
W =111 1
11 0

31



allows our previously imagined objects to be realized:

- 1 0 -1
_ 11 -1 100
E = 11 1] =

-1 0 1 01 1

- 11 0

1 00
D = 0 2 0
0 0 2
1 1 -1 1 4 0 1 0 -1
g = -1 -1 2 2 5 -2 11 1
0 1 -1 3 6 —2 11 0

The transformation matrix ZGD'ET for (u,v) is therefore (this will be ex-

plained below)

3 3
2 0
This checks out (as it must) since
1 4 0
3 3 1 1 -1 1 1 -1
= 2 5 -2
2 0 -1 0 1 -1 0 1
3 6 -2

This example illustrates how there is no loss of generality in = being a partition
matrix. It also provides an example where “higher-level units” (in the system

y' = Ay) are not intuitively obvious, and are comprised of overlapping basic

32



units; v = y, — Yo is contained within u = y; — (yo — y0).*
Three points deserve clarification. First, why can theorem 2 be applied to A
and the general aggregation operator =W ~! to conclude something about the

compatibility of = with G? The justification is the general equivalence

A:Ker(EW ') - Ker(EW ') <= G : Ker(Z) — Ker(Z)

which depends only on G = W~'AW. Second, why is the matrix ZGD =T
for the reduced system the same, for both systems, ¥’ = Ay and 2’ = Gx? The

justification is the general equivalence

(EGDT'EN)E) = ()G) < (EGDTENEWT) = EW)(A)

which depends only on A = WGW ~!. Third, since theorem 2 may be applied
directly to A and the general aggregation operator ZW ! (in the manner illus-
trated and justified above), why was equivalence not more generally defined?
We think it interesting that general aggregation is achieved via partitioning un-
derlying components in a system obtained by a simple change of variable. It is
that fact which we wanted to stress. It suggests that the initial coordinate sys-
tem (or basic components) which define y' = Ay might not be intrinsic; perhaps
a different choice (one which admits equivalence by way of partitioning) could

be more natural.

4We are speaking of the system y' = Ay (in the system 2’ = Gz there is no overlap).

33



10 Conclusions and further work

We have presented a formalisation for one aspect of what might be meant by
“dynamical hierarchy”; a hierarchy of system representations at different levels
of granularity which are mutually compatible with respect to their dynamics.
We view this as the situation in which the microscopic elements of a system can
be clustered into higher-level units in such a way that the macroscopic dynamics
is compatible with the rules of microscopic behaviour. Under these conditions,
the higher-level units might be said to be naturally emergent properties of the
system. Of course this will not work for arbitrary methods of clustering, and we
have begun to investigate conditions under which this can be achieved. In the
case where the underlying dynamics can be described as a linear function of the
population state space, we have provided a necessary and sufficient condition
for compatibility (namely, that the kernel of the corresponding projection is an
invariant subspace of the dynamics). We have also proved a strong sufficient
condition which exploits symmetries within the set of underlying components,
using the language of group theory. In the general case, the microscopic dy-
namics may be described by a non-linear map G. In this case, more work needs
to be done to provide a characterisation of the compatible equivalence classes.
The development of this theory will be the subject of a future paper.

If we return to the examples of the floating balloon and the sand-pile, we
can now see exactly why their structures are trivial. In the case of the helium
balloon, there are only two possible ways of aggregating the atoms which are
compatible with the dynamics. Either each individual atom is in an equivalence
class of its own, or we take the whole balloon to be a single aggregation. Of

course, these two aggregations are always possible, in any system. The helium

34



balloon has only trivial structure, because only the trivial aggregations are pos-
sible. The situation with the pile of sand is different, however. As long as the
sand does not move, the dynamics of the system are trivial (that is, G is simply
the identity map). This means that any aggregation of states will be compat-
ible with the dynamics. We can partition the grains of sand into any subsets
we like, and the resulting states will be compatible with the dynamics. This
is the opposite extreme to the floating balloon example, but still renders the
example trivial. If all ways of aggregating are possible, then there is no reason
to prefer one way of doing it to another. We now see that the two examples
are trivial, but for completely different reasons. This observation enables us to
characterise non-trivial dynamical hierarchies as being a subset system (ordered

by inclusion) of compatible partitions, that lies between these two extremes.

Acknowledgements

Michael D. Vose and Alden Wright completed some of this work while visit-
ing the University of Birmingham. The work was supported by EPSRC grant
GR/R47394. We would like to thank the anonymous reviewers for helpful com-

ments.

References

[1] Biggs, N. L. (1971). Finite groups of automorphisms. Cambridge University

Press, Cambridge, UK.

[2] Gross, D. and McMullen, B. (2001). Is it the right ansatz? Artificial Life,

7(4):355-365.

35



[3] Presley, J. F., Smith, C., Hirschberg, K., Miller, C., and Cole, N. B. (1998).

Golgi membrane dynamics. Molecular Biology of the Cell, 9(7):1617-1626.

[4] Rowe, J. E. (1999). Population fixed-points for functions of unitation.
In Banzhaf, W. and Reeves, C., editors, Foundations of genetic algorithms

(FOGA-5), San Mateo, CA. Morgan Kaufmann.

[5] Rowe, J. E., Vose, M. D., and Wright, A. H. (2002). Group properties of

crossover and mutation. Evolutionary Computation, 10(2):151-184.

[6] Shpak, M., Stadler, P. F., Wagner, G. P., and Hermisson, J. (2003). Aggrega-
tion of variables and system decomposition: applications to fitness landscape

analysis. Technical Report 03-04-025, Santa Fe Institute.

[7] Simon, H. and Ando, J. (1961). Aggregation of variables in dynamic systems.

FEconometrica, 29:111-138.

[8] Spears, W. M. and Jong, K. D. (1997). Analysing GAs using Markov models
with semantically ordered and lumped states. In Belew, R. K. and Vose,
M. D., editors, Foundations of Genetic Algorithms, volume 4, pages 85-100.

Morgan Kaufmann.

[9] Stephens, C. R. and Waelbroeck, H. (1999). Schemata evolution and building

blocks. Evolutionary Computation, 7(2):109-124.

[10] Vose, M. D. (1999). The Simple Genetic Algorithm: Foundations and The-

ory. MIT Press, Cambridge, MA.

[11] Vose, M. D. and Rowe, J. E. (2000). Random heuristic search: applications
to GAs and functions of unitation. Computer Methods in Applied Mechanics

and Engineering., 186(2-4):195-220.

36



