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ABSTRACT

This paper continues the development, begun in part I, of the relationship between the simple genetic
algorithm and the Walsh transform. The mixing scheme (comprised of crossover and mutation) is
essentially “triangularized” when expressed in terms of the Walsh basis. This leads to a formulation of
the inverse of the expected next generation operator. The fixed points of the mixing scheme are also
determined, and a formula is obtained giving the fixed point corresponding to any starting population.
Geiringer’s theorem follows from these results in the special case corresponding to zero mutation.

1 Introduction

The formalism used in this paper to model the simple genetic algorithm is that of random heuristic
search with heuristic G, though the focus is on the case where the search space Ω consists of c-ary
strings of length ` (see Vose & Wright, 1994, and Vose, 1996, the most comprehensive account is in
Vose, 1998).

As explained in the first paper in this sequence (see Vose & Wright, 1998), it is the Fourier transform,
not the Walsh transform, that is appropriate in the general cardinality case (i.e., when c > 2). However,
when c = 2 the Fourier transform is the Walsh transform; by working with the Fourier transform in
the body of this paper we therefore implicitly deal with the Walsh transform while simultaneously
providing a framework that extends directly to higher cardinality alphabets. This paper explicitly
deals with the Walsh transform by focusing on the binary case (c = 2) in the examples and the
concrete results. The notation and several of the abstract results, however, will be stated in greater
generality (for arbitrary c) to make plain how the analysis extends.

The reader is referred to part I (Vose & Wright, 1998) for relevant context, technical details, notation,
and definitions. However, to orient the reader, the introduction does include a brief overview of selected
mathematical objects, connecting them with their intended interpretations.

Part I demonstrated how mixing (mutation and crossover) is simplified by the Fourier transform. The
operator M which encorporates the effects of mixing is referred to as the mixing scheme and is defined

1Part of this work was done while the second author was visiting the Computer Science Department of the University

of Tennessee.
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in terms of a mixing matrix M and a group of permutation matrices {σj},

M(x) = <. . . , (σix)T Mσix, . . .>

If p represents the current population (pi = the proportion of string i in the population), the mixing
scheme satisfies

M(p)i = Pr{ i results from mixing parents uniformly selected from p }

The operator F which encorporates the effects of selection is referred to as the selection scheme and
satisfies

F(p)i = Pr{ i is selected as a parent from p }
The composition of the selection and mixing schemes yeilds the simple genetic algorithm’s heuristic
function G = M◦F which satisfies

G(p)i = Pr{ i is contained in the next generation given current population p }

An alternate interpretation is that G(p) is the expected next generation, given current population
p. As explained in (Vose, 1996) and in (Vose, 1998), the heuristic is a key component of the finite
population model – a Markov chain – having transition probabilities given by the matrix

Qx,x′ = r!
∏

j

G(x)
rx′

j

j

(rx′
j)!

where r is the population size, and where the state space is the set of population vectors corresponding
to populations of size r.

The Fourier matrix is defined by

Wi,j = c−`/2e2π
√
−1 iT j

and the Fourier transform v̂ of v is defined as

WxC if v is a column vector x

WACWC if v is a matrix A

yCWC if v is a row vector y

where superscript C denotes complex conjugate. In the binary case (c = 2), all objects are real, the
conjugation may be dispensed with, and the Walsh transform results. By using the columns of W
as the basis B of the coordinate system in which to express how M transforms, M is put into a
particularly managable form. Let the standard basis be {e0, ..., en−1} where ej is the jth column of
the identity matrix, and let

x =
∑

xj ej

The k th component of M(x) with respect to the basis B = {ê0, ..., ên−1} is

√
n

∑

i

x̂ C
i x̂ C

k	iM̂i,i	k

where ⊕ is componentwise addition modulo c, 	 is componentwise subtraction modulo c, and ⊗ is
componentwise multiplication modulo c. We begin in the next section from this point, making use of
the notation, definitions, formulas, and results of part I (see Vose & Wright, 1998).
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The first main result is obtained in Section 2. There a formula for M−1 is obtained. A consequence
is that, for the simple genetic algorithm, the function G which maps the current population to the
expected next generation is invertible.

Section 3 is concerned with characterizing, for arbitrary initial population p, the limiting behavior of
iterated mixing

p, M(p), M2(p), . . .

This corresponds to the trajectory of expected next generations of a simple GA under uniform selection,
crossover, and mutation. In the zero mutation case, our results include Geiringer’s theorem.

2 The Inverse GA

The inverse of the function G which produces the expected next generation is obtained in this section
(see Juliany & Vose, 1994 for a general introduction to G in the binary case). This provides the only
known method for simulating a genetic algorithm backwards in time. Specifically, G−1 applied to a
population p yeilds the unique population q which has the property that the expected next generation
from q is p. As the population size increases, stochastic fluctuations die out, so the expectation can
be dispensed with. That is, G(q) actually is the next generation from q and G−1(p) actually is the
generation previous to p, in the infinite population case.

Because G is defined as the composition
M◦F

it is invertible provided both M and F are. In both part I and in this paper, the selection scheme is
proportional, which has the consequence that inverting F is particularly easy (more general selection
schemes have been inverted however, including ranking selection and tournament selection, see Vose,
1998). The challenging part is to invert the mixing scheme. This will be shown possible as a con-
sequence of the following theorem which follows from theorem 4.3 of (Vose & Wright, 1998) and the
discussion preceeding it:

Theorem 2.1 The k th component of y = M(x) with respect to the basis B = {ê0, ..., ên−1} is

ŷ C
k =

√
n

∑

i

x̂ C
i x̂ C

k	iM̂i,i	k

Before proceeding to invert M, an example of computing ŷ via the formula given by theorem 2.1 will
be given. Begin with the population {01, 02, 10, 12, 22} where ` = 2 and c = 3. This population has
corresponding population vector

x = <0, 1
5 , 1

5 , 1
5 , 0, 1

5 , 0, 0, 1
5 >

The conjugate Fourier transform of x is

x̂C = < 1
3 , −1+

√
−3

15 , −1−
√
−3

15 , 1−
√
−3

30 , −1−
√
−3

15 , −1
15 , 1+

√
−3

30 , −1
15 , −1+

√
−3

15 >

The mutation vector
µ = < 49

64 , 7
128 , 7

128 , 7
128 , 1

256 , 1
256 , 7

128 , 1
256 , 1

256 >
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corresponds to a mutation rate of 1/8, and the crossover vector

χ = < 1
4 , 1

4 , 0, 1
4 , 1

4 , 0, 0, 0, 0>

corresponds to a one-point crossover rate of 1/2 (or, equivalently, to a uniform crossover rate of 1).
The mixing matrix M corresponding to these mutation and crossover vectors is

M =




49
64

105
256

105
256

105
256

225
1024

225
1024

105
256

225
1024

225
1024

105
256

7
128

7
128

225
1024

15
512

15
512

225
1024

15
512

15
512

105
256

7
128

7
128

225
1024

15
512

15
512

225
1024

15
512

15
512

105
256

225
1024

225
1024

7
128

15
512

15
512

7
128

15
512

15
512

225
1024

15
512

15
512

15
512

1
256

1
256

15
512

1
256

1
256

225
1024

15
512

15
512

15
512

1
256

1
256

15
512

1
256

1
256

105
256

225
1024

225
1024

7
128

15
512

15
512

7
128

15
512

15
512

225
1024

15
512

15
512

15
512

1
256

1
256

15
512

1
256

1
256

225
1024

15
512

15
512

15
512

1
256

1
256

15
512

1
256

1
256




The Fourier transform of the mixing matrix is

M̂ =




1 13
32

13
32

13
32

169
1024

169
1024

13
32

169
1024

169
1024

13
32 0 0 169

1024 0 0 169
1024 0 0

13
32 0 0 169

1024 0 0 169
1024 0 0

13
32

169
1024

169
1024 0 0 0 0 0 0

169
1024 0 0 0 0 0 0 0 0

169
1024 0 0 0 0 0 0 0 0

13
32

169
1024

169
1024 0 0 0 0 0 0

169
1024 0 0 0 0 0 0 0 0

169
1024 0 0 0 0 0 0 0 0




Computing ŷC via theorem 2.1 shows it to be

< 1
3 , −13+13

√
−3

240 , −13−13
√
−3

240 , 13−13
√
−3

480 , −169−169
√
−3

9600 , −1183
38400 , 13+13

√
−3

480 , −1183
38400 , −169+169

√
−3

9600 >

The details of the computation of ŷC
7 are given by

ŷC
7 = 3

(
x̂C

0 x̂C
7 M̂0,5 + x̂C

1 x̂C
6 M̂1,3 + x̂C

6 x̂C
1 M̂6,2 + x̂C

7 x̂C
0 M̂7,0

)

= 3
(
− 169

46080 − 169
115200 − 169

115200 − 169
46080

)

= − 1183
38400 .

Theorem 2.1 effectively “triangulates” the equations which relate one generation to the next. The key
observation is that M̂i,i	k = 0 unless iT (i 	 k) = 0 (this follows from theorem 3.2 of Vose & Wright,
1998). The condition iT (i 	 k) = 0 means that at every component where i differs from k, it must
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be zero. Therefore, the nonzero terms in the summation above correspond to elements i of Ωk which
agree with k at every nonzero component. In particular, the k th component of M(x) with respect
to the basis B is determined by objects subscripted by elements of Ωk. The “triangularization” is
obtained by ordering the k th components by #k.

The proof of the next theorem will illustrate this principle more formally. Let Ω′
k denote Ωk \ {0, k}.

It is only for notational convenience that the summation in theorem 2.2 below is taken to be over Ω′
k.

As noted above, nonzero terms actually correspond to objects subscripted by special elements of Ωk

(those agreeing with k at nonzero components). In particular, if i ∈ Ω′
k and k is nonzero, then neither

i nor k 	 i can be k, and therefore both #i < #k and #(k 	 i) < #k provided iT (i 	 k) = 0.

Theorem 2.2 If M∗ is invertible, then M has an inverse on Λ given by the map y 7→ x which is
defined by the following recursion:

x̂ C
k =





ŷ C
k if k = 0

(2M̂k,0)
−1(ŷ C

k − √
n

∑

i∈Ω′
k

x̂ C
i x̂ C

k	iM̂i,i	k) if k > 0

Sketch of proof: If x ∈ Λ, the vector y = M(x) satisfies

ŷ C
k =





x̂ C
k if k = 0

2M̂k,0 x̂C
k +

√
n

∑

i∈Ω′
k

x̂ C
i x̂ C

k	iM̂i,i	k if k > 0

This relationship follows directly from theorem 2.1, the fact that M̂0,−k = M̂k,0 (since M is symmetric),
and the observation that x̂0 = 1/

√
n for all x ∈ Λ. Solving for x̂C

k gives the recursion displayed in
theorem 2.2. As observed in the discussion preceeding theorem 2.2, if k > 0 then elements i ∈ Ω′

k

corresponding to nonzero terms in the sum (i.e., satisfying iT (i	 k) = 0) are such that both #i < #k
and #(k	 i) < #k. Therefore, the recursion terminates at x̂ C

0 . This recursion, and hence the inverse,
is well defined provided division by zero is avoided, i.e., provided M̂k,0 6= 0. Theorem 3.12 of (Vose &

Wright, 1998) shows the 0 th column of M̂ is the spectrum of M ∗. Hence the invertibility of M is
equivalent to the invertibility of M ∗. 2

Suppose crossover can be described in terms of masks – such as one-point, n-point, or uniform crossover
(see Vose & Wright, 1994 for the technical definition of crossover masks). If the crossover rate is less
than 1, it follows that the crossover distribution is such that χ0 > 0. The following corollary relates
this conclusion to the invertibility of M.

Corollary 2.3 If mutation is given by a mutation rate 0 < µ < 1 satisfying µ 6= 1 − 1/c, and if
crossover is such that χ0 > 0, then M−1 exists.

Sketch of proof: According to theorem 2.2 and theorem 3.12 of (Vose & Wright, 1998), it suffices that
M̂k,0 is nonzero for all k. Since µ̂0 = 1/

√
n, it follows from theorem 3.2 of (Vose & Wright, 1998) that

M̂k,0 =

√
n

2
µ̂−k

∑

j

(χj + χ
j) [k ⊗ j = 0]
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The summation above is positive given χ0 > 0. Hence it suffices that µ̂k is nonzero for all k. Note
that

√
n µ̂k =

∑

j

e(jT k)(µ/(c − 1))#j (1 − µ) `−#j

= (1 − µ)`
∑

j

(µ/((1 − µ)(c − 1)))#j e(jT k)

Ignoring the (1 − µ)` factor, this has the form

∑

j

x#j e(jT k) =
∑

j

x
∑

#ji e(
∑

jiki) =
∏

i

∑

ji

x#ji e(jiki)

Note that if ki = 0, then the inner sum is nonzero. Assume therefore that ki > 0, and note that in
this case the sum is

1 + x(
∑

ji

e(jiki) − 1) = 1 − x

This is nonzero provided x 6= 1, which is equivalent to µ 6= 1 − 1/c. 2

Since G = M◦ F , corollary 2.3 may be brought to bear on the invertibility of G. Starting with the
equation y = F(x) = Fx/1T Fx corresponding to proportional selection, it follows that y is simply
Fx when magnitude is ignored. Therefore the inverse to F on Λ is

x 7→ F−1x /1T F−1x

Appealing to corollary 2.3 and the paragraph before it, the inverse of G exists and is given by

G−1 = F−1 ◦M−1

provided that the selection scheme is proportional, the crossover rate is less than 1, and the mutation
rate 0 < µ < 1 satisfies µ 6= 1 − 1/c.

Although it is beyond the scope of this paper, Vose has obtained formalisms for selection schemes
beyond proportional selection. In particular, ranking and tournament selection can be dealt with as
well (see Vose, 1998). Moreover, F−1 is known to exist in both of those cases and an algorithm to
compute it has been obtained. Therefore, the invertibility of G is known in a wider context than that
corresponding to proportional selection.

The invertibility of G is an important mathematical fact which contributes to the body of knowledge
known about the simple genetic algorithm, allowing the genetic algorithm to be run “backwards”,
in some sense, from one generation to the previous. The exploration of this possibility – evolution
backwards in time – was initiated in the paper “The Genetic Algorithm Fractal” for the two bit binary
case (see Juliany & Vose, 1994). Interestingly, fractal structures were discovered near a point which
appears to generically be the negative time limit point of evolution, i.e.,

lim
t→∞

G−t(p)

For a cursory discussion of G−1 from this perspective, as well as color figures depecting the fractal
structures discovered, see (Juliany & Vose, 1994).
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3 Recombination Limits

This section considers the effect of iterated mixing on an arbitrary initial population x. The recom-
bination equations given by theorem 2.1 allow the fixed points of M to be determined explicitly. In
fact, the triangular form can be used to also determine when the limit of the sequence

x, M(x), M2(x), . . .

exists. An important preliminary result is

Lemma 3.1 If z > 0 then |M̂0,z| ≤ 1/2. When equality holds and z = x 	 y for nonzero x and y,

then M̂x,y = 0.

Sketch of proof: By theorem 3.2 of (Vose & Wright, 1998),

M̂−u,v = [uT v = 0]
n

2
µ̂u µ̂v

∑

k

(χk + χ
k) [u ⊗ k = v ⊗ k = 0]

Since |[uT v = 0] n
2 µ̂u µ̂v| ≤ 1/2, and since we are interested in the case u = 0 and v = z, the first part

of the lemma is satisfied if

1 ≥
∑

k

(χk + χ
k) [z ⊗ k = 0]

But k ∈ Ωz in the sum above, so the terms indexed by k and k are disjoint (since z > 0). Hence the
sum is bounded by the sum over all χj , which is 1. The second part of the lemma therefore requires
every nonzero χj to occur in the sum above so that its value is 1. Moreover, the conclusion of the
second part is trivially satisfied unless xT y = 0, and in that case Ωz = Ωx	y = Ωx⊗y. We may assume
therefore that

1 =
∑

k

(χk + χ
k) [x ⊗ k = y ⊗ k = 0]

Thus the proof would be complete (i.e., M̂x,y = 0) if this implied that

0 =
∑

k

(χk + χ
k) [x ⊗ k = y ⊗ k = 0]

Since χk > 0 =⇒ x⊗k = y⊗k = 0 (because every nonzero χj occurs in the sum equaling 1), it follows
that χk > 0 =⇒ x ⊗ k 6= 0 (because x > 0). Moreover if k = j, then y ⊗ j = 0 and hence y ⊗ j 6= 0
(because y > 0). Hence nonzero χk do not occur in the sum above (which corresponds to M̂x,y). The
same observation applies to χ

k (i.e., nonzero χ
k do not occur in the sum). Since the sum contains

only zero terms, it must be zero. 2

Corollary 3.2 If z > 0 then |M̂z,0| ≤ 1/2. When equality holds and z = x 	 y for nonzero x and y,

then M̂x,y = 0.
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Sketch of proof: Since M is symmetric, M̂z,0 = M̂0,−z. Moreover, z > 0 =⇒ −z > 0. Hence appealing
to lemma 3.1 establishes the first part of the proof. Since M is real, M∧ = MH∧ = M∧H , thus
M̂x,y = M̂C

y,x. If |M̂z,0| = 1/2 and z = x 	 y, then |M̂0,−z| = 1/2 and −z = y 	 x. Appealing to
lemma 3.1 once more yeilds

0 = M̂y,x = M̂C
y,x = M̂x,y

2

Next recall that y = M(x) satisfies

ŷ C
k =





x̂ C
k if k = 0

2M̂k,0 x̂C
k +

√
n

∑

i∈Ω′
k

x̂ C
i x̂ C

k	iM̂i,i	k if k > 0

which was noted in the proof of theorem 2.2. This can be put in the abbreviated form

ŷk =





x̂k if k = 0

αkx̂k + βk if k > 0

It is easy to see that limj Mj(x) exists by considering k th components in order of increasing #k as
follows. But first note when #k = 1 the sum βk is empty (because then Ωk = {0, k}), hence zero.
Also, corollary 3.2 implies that |αk| ≤ 1 and that |αk| = 1 =⇒ βk = 0 provided #k > 1 (because of
the factors M̂i,i	k in the terms of βk). Moreover, if |αk| = 1, then αk must be a c th root of unity,
which can be seen as follows. From theorem 3.2 of (Vose & Wright, 1998) it follows that

αC
k =

√
n µ̂k

∑

j

(χj + χ
j) [k ⊗ j = 0]

Thus αC
k points in the direction of µ̂k and can have – by corollary 3.2 – modulus one only if there is

no cancellation in the sum
µ̂k =

√
n

∑

i

µi e(i
T k)

Thus cancellation is avoided only when every nonzero µi occurs as a coefficient of the same c th root
of unity.

With these preliminary observations out of the way, we now turn to the behavior of the sequence
x, M(x), M2(x), . . . Clearly, when #k = 0, the k th component of limj Mj(x) has already converged
since then ŷ0 = x̂0.

Next, for #k = 1, if |αk| < 1, the k th component converges to 0 because the relation between
successive iterations is ŷk = αkx̂k. When αk = 1 then ŷk = x̂k so the k th component has converged.
If αk is any other c th root of unity, then the k th component is periodic, with period some divisor of
c. In that case considering Mc in place of M restores convergence since then ŷk = αc

kx̂k = x̂k.

In the general case of #k > 1, the sum βk may be treated as having already converged because it
involves components subscripted by j with #j < #k. If components are periodic for some values
of j, considering Mc in place of M restores convergence. If αk = 1 then ŷk = x̂k (since βk = 0)
so the k th component has already converged. If αk is any other c th root of unity, then the k th
component is periodic having period some divisor of c for M, but it has already converged for Mc.
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When |αk| < 1, the k th component converges to βk/(1 − αk) since the relation between successive
iterations is ŷk = αkx̂k + βk.

This discussion is summarized by the following theorem.

Theorem 3.3 The function x 7→ y defined recursively, via Walsh coordinates, by

ŷC
k =





x̂C
k if k = 0 or |M̂k,0| = 1/2

√
n(1 − 2M̂k,0)

−1
∑

i∈Ω′
k

ŷ C
i ŷ C

k	iM̂i,i	k otherwise

produces the fixed point y = limj Mcj(x) of Mc. If |M̂k,0| = 1/2 =⇒ M̂k,0 = 1/2, then y is also the
fixed point limj Mj(x) of M. Otherwise, Mj(x) converges to a periodic orbit having period a divisor
d of c and elements {Mi(y) : 0 ≤ i < d}.

As an example, consider the population vector x (given earlier) whose conjugate Fourier transform is

x̂C = < 1
3 , −1+

√
−3

15 , −1−
√
−3

15 , 1−
√
−3

30 , −1−
√
−3

15 , −1
15 , 1+

√
−3

30 , −1
15 , −1+

√
−3

15 >

The mixing matrix for zero mutation and a one-point crossover rate of 1 is

M = M̂ =




1 1/2 1/2 1/2 1/4 1/4 1/2 1/4 1/4

1/2 0 0 1/4 0 0 1/4 0 0

1/2 0 0 1/4 0 0 1/4 0 0

1/2 1/4 1/4 0 0 0 0 0 0

1/4 0 0 0 0 0 0 0 0

1/4 0 0 0 0 0 0 0 0

1/2 1/4 1/4 0 0 0 0 0 0

1/4 0 0 0 0 0 0 0 0

1/4 0 0 0 0 0 0 0 0




The conjugate Fourier transform of the fixed point as given by theorem 3.3 is

ŷC = < 1
3 , −1+

√
−3

15 , −1−
√
−3

15 , 1−
√
−3

30 , 1+
√
−3

75 , −2
75 , 1+

√
−3

30 , −2
75 , 1−

√
−3

75 >

Combining theorem 3.3 with theorem 3.12 of (Vose & Wright, 1998), we see that the fixed points of
M form a manifold of dimension equal to the sum of the multiplicities that c th roots of unity have as
eigenvalues of 2M∗. In particular, if the spectrum of 2M ∗ does not contain c th roots of unity (as is
the case when mutation is positive), then M has the unique fixed point 1/

√
n. Although it is beyond

the scope of this paper, Vose has proved M is a contraction mapping in that case (see Vose, 1998).

Next, the fixed points of M in the special case of zero mutation are characterized. Note in this case
that M̂k,0 ≥ 0 (it is a sum of non-negative terms), hence convergence to a periodic orbit is not possible,
and therefore the y of theorem 3.3 is the fixed point limj Mj(x) of M corresponding to x.
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Lemma 3.4 If mutation is zero, then for every k,

∑

i∈Ω′
k

M̂i,i	k = 1 − 2M̂k,0

Sketch of proof: By corollary 3.3 of (Vose & Wright, 1998), M = M̂ (since mutation is zero). Note
that

∑

i∈Ωk

Mi,i	k =
∑

i∈Ωk

∑

u

χu + χu

2
[i ⊗ u ⊕ u ⊗ (i 	 k) = 0]

=
∑

i∈Ωk

∑

u

χu + χu

2
[i 	 u ⊗ k = 0]

=
∑

u

χu + χu

2

∑

i∈Ωk

[i = u ⊗ k]

=
∑

u

χu + χu

2

Therefore
1 =

∑

i∈Ωk

Mi,i	k = 2Mk,0 +
∑

i∈Ω′
k

Mi,i	k

which finishes the proof. 2

Let Bk = {i ∈ Ωk : #i = 1 ∧ iT (k 	 i) = 0}. The previous lemma, together with theorem 3.3, leads
to the following theorem.

Theorem 3.5 Assume zero mutation, and let y be the limit of x, M(x), M2(x), . . . Suppose further
that #k > 1 =⇒ M̂k,0 < 1/2. Then

ŷk = c(#k−1)`/2
∏

j∈Bk

x̂j

Sketch of proof: Induct on #k. The base case is #k ≤ 1. Consider first #k = 0, so ŷk = 1/
√

n.
Moreover,

c(#k−1)`/2
∏

j∈Bk

x̂j = c−`/2
∏

j∈∅
x̂j = 1/

√
n

When #k = 1, appealing to lemma 3.4 gives

1 − 2M̂k,0 =
∑

i∈Ω′
k

M̂i,i	k =
∑

i∈∅
M̂i,i	k = 0

Hence M̂k,0 = 1/2, which by theorem 3.3 implies ŷk = x̂k. Moreover,

c(#k−1)`/2
∏

j∈Bk

x̂j =
∏

j∈{k}
x̂j = x̂k
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For the inductive case, assume the result for all ŷj such that #j < #k. Let i ∈ Ω′
k be such that

iT (k 	 i) = 0. Note that #i < #k and #(k 	 i) < #k. By the induction hypothesis,

ŷiŷk	i =


c(#i−1)`/2

∏

u∈Bi

x̂u





c(#(k	i)−1)`/2

∏

v∈Bk	i

x̂v




= c(#i+#(k	i)−2)`/2
∏

j∈Bk

x̂j

= c(#k−2)`/2
∏

j∈Bk

x̂j

Applying theorem 3.3 (M̂k,0 < 1/2 by hypothesis and M̂ = M is real) gives

ŷk =
√

n (1 − 2M̂k,0)
−1

∑

i∈Ω′
k

c(#k−2)`/2M̂i,i	k

∏

j∈Bk

x̂j

Using (1 − 2M̂k,0)
−1 ∑

i∈Ω′
k
M̂i,i	k = 1, which follows from Lemma 3.4, completes the proof. 2

Corollary 3.6 Let u, v ∈ Ωk be such that k = u ⊕ v and uT v = 0. If #h > 1 =⇒ M̂h,0 < 1/2, then
ŷuŷv = ŷk/

√
n.

Sketch of proof: The result follows from the proof of theorem 3.5. If #k ≤ 1, the result follows from
the proof of the base step. When #k > 1, take i = u , and hence k 	 i = v, in the proof of the
inductive step. 2

A consequence of theorem 3.5 is that the space of fixed points under crossover-only mixing is homeo-
morphic to the `-fold cartesian product of c − 1 dimensional simplices. A homeomorphism from

{< α0, . . . , α`−1 > : αu ∈ <c ∧ (αu)v ≥ 0 ∧
∑

v

(αu)v = 1}

into the space of fixed points is given by

ŷk = c(#k−1)`/2
∏

j∈Bk

x̂j

where

x̂j =
[ #j = 1 ]√

n

`−1∑

u=0

[ ju > 0 ]
c−1∑

i=0

e(jui) (αu)i

The space of fixed points includes every vertex of Λ, as well as the convex hull of vertices corresponding
to strings that differ only at a fixed component (a c−1 dimensional simplex). This result is dependent
on the condition that #k > 1 =⇒ Mk,0 < 1/2.

Some of the previous paragraph might not seem obvious; why, for example, is the convex hull mentioned
above fixed, and why is the domain of the homeomorphism the `-fold cartesian product of c − 1

11



dimensional simplices? The latter fact follows from the observation that the proportion (αu)i of the
population (described by) x having i in position u is

(αu)i =
∑

j

[ jT cu = i ] xj

=
1

c

∑

j

c−1∑

k=0

e(k(jT cu − i)) xj

=
1

c

c−1∑

k=0

e(−ki)
∑

j

e(k jT cu) xj

=

√
n

c

c−1∑

k=0

e(−ki) x̂kcu

Since the αu are independent, and since each αu varies over a c − 1 dimensional simplex (because
(αu)0 + · · · + (αu)c−1 = 1), these equations implicitly determine x̂kcu as a function over the stated
domain. Solving for x̂kcu may be accomplished as follows,

1√
n

c−1∑

i=0

e(ki) (αu)i =
1

c

c−1∑

i=0

e(ki)
c−1∑

h=0

e(−hi) x̂hcu

=
1

c

c−1∑

h=0

x̂hcu

c−1∑

i=0

e(i(k − h))

=
c−1∑

h=0

x̂hcu [ k = h ]

= x̂kcu

Moreover, theorem 3.5 determines the ŷu in terms of the x̂kcu . It is not difficult to see that the convex
hull mentioned above (determined by vertices vertices corresponding to strings that differ only at a
fixed component) is fixed. Children of such strings are identical to their parents, and M acts as the
identity on populations comprised of such strings (alternatively, theorem 3.5 may be used directly to
calculate that the edges are fixed).

We next show that theorem 3.5 implies a result of H. Geiringer (1944), who showed that, except in
the case of “complete linkage”, the distribution of genotypes approaches independence under repeated
recombination. In other words, the limiting frequency of string k is the product of the frequencies of
the components of k in the initial population. Of course, this is strictly a zero mutation result. In
the general case of nonzero mutation, Geiringer’s result is false and it is theorem 3.3, not Geiringer’s
theorem, which determines asymptotic behavior.

Two loci are completely linked if crossover cannot separate the alleles at these two loci. In other
words, two loci are completely linked if whenever j has differing bits at the loci then χj = 0.

Proposition 3.7 The loci at positions u and v are completely linked if and only if Mcu⊕cv ,0 = 1/2.
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Sketch of proof: Suppose loci u and v are not completely linked and let k = cu ⊕ cv. Then there exists
a crossover mask j with χj > 0 such that j ⊗ k 6= 0 and j ⊗ k 6= 0. Note that

Mk,0 =
∑

i

χi + χ
i

2
[ i ⊗ k = 0 ]

=
∑

i

[ i ⊗ k = 0 ] + [ i ⊗ k = 0 ]

2
χi

Note that χj has a zero coefficient, and the conditions [ i ⊗ k = 0 ] and [ i ⊗ k = 0 ] are mutually
exclusive. It follows that M0,k < 1/2. Moreover, the argument is reversible. 2

Corollary 3.8 If mutation is zero and no loci are completely linked, then #k > 1 =⇒ M̂k,0 < 1/2.

Sketch of proof: Since mutation is zero, M = M̂ . Suppose #k > 1, and let u 6= v be such that
{cu, cv} ⊂ Ωk. The corollary is a consequence of corollary 3.2, proposition 3.7, and the observation
that

Mk,0 =
∑

i

χi + χ
i

2
[ i ⊗ k = 0 ]

≤
∑

i

χi + χ
i

2
[ i ⊗ (cu ⊕ cv) = 0 ]

= Mcu⊕cv ,0

The inequality above follows from the implication [i ⊗ k = 0] =⇒ [i ⊗ (cu ⊕ cv) = 0]. 2

Given initial population x, let 0 ≤ u < `, and let j ∈ Ω. Following Geiringer, define

pu(j) =
∑

k

xk[k ⊗ cu = j ⊗ cu]

Thus pu(j) is the proportion of strings in population x whose u th component agrees with the u th
component of j. According to the discussion following corollary 3.6,

pu(j) = (αu)ju

Moreover,

pu(i1) = (αu)C
i

=

√
n

c

c−1∑

k=0

e(ki) x̂C
kcu

=

√
n

c

∑

h∈Ωcu

e(i1T h) x̂C
h

Note that i as used above is a scalor, and therefore i1 = < i, . . . , i >.

Theorem 3.9 (Geiringer) Let mutation be zero, let x ∈ Λ and let y = limjMj(x). If no pair of loci
are completely linked, then

yk =
`−1∏

j=0

pj(k)
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Sketch of proof: Beginning with the Fourier transform, and using corollary 3.6,
√

n yk =
∑

i

e(kT i) ŷC
i

=
∑

u0∈Ω
c0

· · ·
∑

u`−1∈Ω
c`−1

e(kT (u0 ⊕ · · · ⊕ u`−1)) ŷC
u0⊕···⊕u`−1

=
∑

u0∈Ω
c0

· · ·
∑

u`−1∈Ω
c`−1

e(kT u0) · · · e(kT u`−1) ŷC
u0

· · · ŷC
u`−1

√
n

`−1

Therefore

yk =
`−1∏

j=0

√
n

c

∑

uj∈Ω
cj

e(kT uj) ŷC
uj

Let i = kj , then, as follows from the discussion prior to theorem 3.9,

pj(k) = pj(i1)

=

√
n

c

∑

h∈Ω
cj

e(i1T h) x̂C
h

=

√
n

c

∑

uj∈Ω
cj

e(kT uj) x̂C
uj

The observation that ŷuj
= x̂uj

(this was established in the base case of the proof to theorem 3.5)
completes the proof. 2

Continuing the previous example, the fixed point as computed by Geiringer’s theorem from the pop-
ulation vector

x = <0, 1
5 , 1

5 , 1
5 , 0, 1

5 , 0, 0, 1
5 >

is
y = < 2

25 , 2
25 , 6

25 , 2
25 , 2

25 , 6
25 , 1

25 , 1
25 , 3

25 >

Conclusion

This paper has further developed the relationship between the simple genetic algorithm and the Walsh
transform begun in part I. The major points explored were

• The triangularization of the mixing scheme.

• The inverse of the expected next generation operator.

• The fixed points of the mixing scheme.

• Geiringer’s theorem in the zero mutation case.

In a future paper, the theoretical machinery developed in this series of papers will be brought to bear
on analyzing the detailed behavior of orbits under mixing (i.e., x,M(x),M2(x), . . .) in the case where
simple convergence to a fixed point does not occur. Of particular interest is the range of behavior that
can be exhibited by the transient phase.

14



Acknowledgements

This research was supported by the National Science Foundation: IRI-8917545 and CDA-9115428.
The second author was partially supported by a Montana NSF EPSCOR grant and a University of
Montana University Research grant.

4 References

Geiringer, H. (1944). On the Probability of Linkage in Mendelian Heredity, Annals of
Mathematical Statistics, 15, 25-57.

Juliany, J. & Vose, M. D. (1994). The Genetic Algorithm Fractal, Evolutionary Computation,
2(2), 165-180.

Koehler, G. (1992). A Proof of the Vose-Liepins Conjecture, Annals of Mathematics and
Artificial Intelligence 5.

Vose, M. D. (1996). Modeling Simple Genetic Algorithms, Evolutionary Computation, 3(4),
453-472

Vose, M. D. (1998). The Simple Genetic Algorithm: Foundations and Theory, MIT Press, In
Press.

Vose, M. D. & Wright, A. H. (1994). Simple Genetic Algorithms with Linear Fitness, Evo-
lutionary Computation, 2(4), 347-368.

Vose, M. D. & Wright, A. H. (1998). The Simple Genetic Algorithm and the Walsh Trans-
form: part I, Theory, Evolutionary Computation: In press.

15


